1,222 research outputs found
Phenomenological Consequences of sub-leading Terms in See-Saw Formulas
Several aspects of next-to-leading (NLO) order corrections to see-saw
formulas are discussed and phenomenologically relevant situations are
identified. We generalize the formalism to calculate the NLO terms developed
for the type I see-saw to variants like the inverse, double or linear see-saw,
i.e., to cases in which more than two mass scales are present. In the standard
type I case with very heavy fermion singlets the sub-leading terms are
negligible. However, effects in the percent regime are possible when
sub-matrices of the complete neutral fermion mass matrix obey a moderate
hierarchy, e.g. weak scale and TeV scale. Examples are cancellations of large
terms leading to small neutrino masses, or inverse see-saw scenarios. We
furthermore identify situations in which no NLO corrections to certain
observables arise, namely for mu-tau symmetry and cases with a vanishing
neutrino mass. Finally, we emphasize that the unavoidable unitarity violation
in see-saw scenarios with extra fermions can be calculated with the formalism
in a straightforward manner.Comment: 22 pages, matches published versio
Signal Propagation in Feedforward Neuronal Networks with Unreliable Synapses
In this paper, we systematically investigate both the synfire propagation and
firing rate propagation in feedforward neuronal network coupled in an
all-to-all fashion. In contrast to most earlier work, where only reliable
synaptic connections are considered, we mainly examine the effects of
unreliable synapses on both types of neural activity propagation in this work.
We first study networks composed of purely excitatory neurons. Our results show
that both the successful transmission probability and excitatory synaptic
strength largely influence the propagation of these two types of neural
activities, and better tuning of these synaptic parameters makes the considered
network support stable signal propagation. It is also found that noise has
significant but different impacts on these two types of propagation. The
additive Gaussian white noise has the tendency to reduce the precision of the
synfire activity, whereas noise with appropriate intensity can enhance the
performance of firing rate propagation. Further simulations indicate that the
propagation dynamics of the considered neuronal network is not simply
determined by the average amount of received neurotransmitter for each neuron
in a time instant, but also largely influenced by the stochastic effect of
neurotransmitter release. Second, we compare our results with those obtained in
corresponding feedforward neuronal networks connected with reliable synapses
but in a random coupling fashion. We confirm that some differences can be
observed in these two different feedforward neuronal network models. Finally,
we study the signal propagation in feedforward neuronal networks consisting of
both excitatory and inhibitory neurons, and demonstrate that inhibition also
plays an important role in signal propagation in the considered networks.Comment: 33pages, 16 figures; Journal of Computational Neuroscience
(published
Low-Bandwidth and Non-Compute Intensive Remote Identification of Microbes from Raw Sequencing Reads
Cheap high-throughput DNA sequencing may soon become routine not only for
human genomes but also for practically anything requiring the identification of
living organisms from their DNA: tracking of infectious agents, control of food
products, bioreactors, or environmental samples.
We propose a novel general approach to the analysis of sequencing data in
which the reference genome does not have to be specified. Using a distributed
architecture we are able to query a remote server for hints about what the
reference might be, transferring a relatively small amount of data, and the
hints can be used for more computationally-demanding work.
Our system consists of a server with known reference DNA indexed, and a
client with raw sequencing reads. The client sends a sample of unidentified
reads, and in return receives a list of matching references known to the
server. Sequences for the references can be retrieved and used for exhaustive
computation on the reads, such as alignment.
To demonstrate this approach we have implemented a web server, indexing tens
of thousands of publicly available genomes and genomic regions from various
organisms and returning lists of matching hits from query sequencing reads. We
have also implemented two clients, one of them running in a web browser, in
order to demonstrate that gigabytes of raw sequencing reads of unknown origin
could be identified without the need to transfer a very large volume of data,
and on modestly powered computing devices.
A web access is available at http://tapir.cbs.dtu.dk. The source code for a
python command-line client, a server, and supplementary data is available at
http://bit.ly/1aURxkc
Photonic Analogue of Two-dimensional Topological Insulators and Helical One-Way Edge Transport in Bi-Anisotropic Metamaterials
Recent progress in understanding the topological properties of condensed
matter has led to the discovery of time-reversal invariant topological
insulators. Because of limitations imposed by nature, topologically non-trivial
electronic order seems to be uncommon except in small-band-gap semiconductors
with strong spin-orbit interactions. In this Article we show that artificial
electromagnetic structures, known as metamaterials, provide an attractive
platform for designing photonic analogues of topological insulators. We
demonstrate that a judicious choice of the metamaterial parameters can create
photonic phases that support a pair of helical edge states, and that these edge
states enable one-way photonic transport that is robust against disorder.Comment: 13 pages, 3 figure
Properties of Galaxies in and around Voids
Two surveys for intrinsically faint galaxies towards nearby voids have been
conducted at the MPI f\"ur Astronomie, Heidelberg. One selected targets from a
new diameter limited () catalog with morphological criteria while
the other used digitized objective prism Schmidt plates to select mainly HII
dwarf galaxies. For some 450 galaxies, redshifts and other optical data were
obtained. We studied the spatial distribution of the sample objects, their
luminosity function, and their intrinsic properties. Most of the galaxies
belong to already well known sheets and filaments. But we found about a dozen
highly isolated galaxies in each sample (nearest neighborhood distance ). These tend to populate additional structures and are not
distributed homogeneously throughout the voids. As our results on 'void
galaxies' still suffer from small sample statistics, I also tried to combine
similar existing surveys of nearby voids to get further hints on the larger
structure and on the luminosity function of the isolated galaxies. No
differences in the luminosity function of sheet and void galaxies could be
found. The optical and infrared properties of both samples are in the normal
range for samples dominated by late-type dwarfs. Follow-up HI studies show that
the isolated dwarfs in both samples have unusual high amount of neutral gas for
a given luminosity.Comment: 10 pages, 4 figures, latex, to appear in the proceedings of the
'Ringberg workshop on Large Scale Structure', hold Sep. 23-28, 199
Decoupling property of the supersymmetric Higgs sector with four doublets
In supersymmetric standard models with multi Higgs doublet fields,
selfcoupling constants in the Higgs potential come only from the D-terms at the
tree level. We investigate the decoupling property of additional two heavier
Higgs doublet fields in the supersymmetric standard model with four Higgs
doublets. In particular, we study how they can modify the predictions on the
quantities well predicted in the minimal supersymmetric standard model (MSSM),
when the extra doublet fields are rather heavy to be measured at collider
experiments. The B-term mixing between these extra heavy Higgs bosons and the
relatively light MSSM-like Higgs bosons can significantly change the
predictions in the MSSM such as on the masses of MSSM-like Higgs bosons as well
as the mixing angle for the two light CP-even scalar states. We first give
formulae for deviations in the observables of the MSSM in the decoupling region
for the extra two doublet fields. We then examine possible deviations in the
Higgs sector numerically, and discuss their phenomenological implications.Comment: 26 pages, 24 figures, text sligtly modified,version to appear in
Journal of High Energy Physic
Study of decays to the final state and evidence for the decay
A study of decays is performed for the first time
using data corresponding to an integrated luminosity of 3.0
collected by the LHCb experiment in collisions at centre-of-mass energies
of and TeV. Evidence for the decay
is reported with a significance of 4.0 standard deviations, resulting in the
measurement of
to
be .
Here denotes a branching fraction while and
are the production cross-sections for and mesons.
An indication of weak annihilation is found for the region
, with a significance of
2.4 standard deviations.Comment: All figures and tables, along with any supplementary material and
additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2016-022.html,
link to supplemental material inserted in the reference
Helicitogenesis: WIMPy baryogenesis with sterile neutrinos and other realizations
We propose a mechanism for baryogenesis from particle decays or annihilations that can work at the TeV scale. Some heavy particles annihilate or decay into a heavy sterile neutrino N (with M ≳ 0.5 TeV) and a ¿light¿ one ν (with m ≪ 100 GeV), generating an asymmetry among the two helicity degrees of freedom of ν. This asymmetry is partially transferred to Standard Model leptons via fast Yukawa interactions and reprocessed into a baryon asymmetry by the electroweak sphalerons. We illustrate this mechanism in a WIMPy baryogenesis model where the helicity asymmetry is generated in the annihilation of dark matter. This model connects the baryon asymmetry, dark matter, and neutrino masses. Moreover it also complements previous studies on general requirements for baryogenesis from dark matter annihilation. Finally we discuss other possible realizations of this helicitogenesis mechanism
- …
