12 research outputs found

    Differences in antigen-specific CD4+ responses to opportunistic infections in HIV infection

    No full text
    HIV-infected individuals with severe immunodeficiency are at risk of opportunistic infection (OI). Tuberculosis (TB) may occur without substantial immune suppression suggesting an early and sustained adverse impact of HIV on Mycobacterium tuberculosis (MTB)-specific cell mediated immunity (CMI). This prospective observational cohort study aimed to observe differences in OI-specific and MTB-specific CMI that might underlie this. Using polychromatic flow cytometry, we compared CD4+ responses to MTB, cytomegalovirus (CMV), Epstein-Barr virus (EBV) and Candida albicans in individuals with and without HIV infection. MTB-specific CD4+ T-cells were more polyfunctional than virus specific (CMV/EBV) CD4+ T-cells which predominantly secreted IFN-gamma (IFN-γ) only. There was a reduced frequency of IFN-γ and IL-2 (IL-2)-dual-MTB-specific cells in HIV-infected individuals, which was not apparent for the other pathogens. MTB-specific cells were less differentiated especially compared with CMV-specific cells. CD127 expression was relatively less frequent on MTB-specific cells in HIV co-infection. MTB-specific CD4+ T-cells PD-1 expression was infrequent in contrast to EBV-specific CD4+ T-cells. The variation in the inherent quality of these CD4+ T-cell responses and impact of HIV co-infection may contribute to the timing of co-infectious diseases in HIV infection

    Gastric and intestinal barrier impairment in tropical enteropathy and HIV: limited impact of micronutrient supplementation during a randomised controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although micronutrient supplementation can reduce morbidity and mortality due to diarrhoea, nutritional influences on intestinal host defence are poorly understood. We tested the hypothesis that micronutrient supplementation can enhance barrier function of the gut.</p> <p>Methods</p> <p>We carried out two sub-studies nested within a randomised, double-blind placebo-controlled trial of daily micronutrient supplementation in an urban community in Lusaka, Zambia. In the first sub-study, gastric pH was measured in 203 participants. In the second sub-study, mucosal permeability, lipopolysaccharide (LPS) and anti-LPS antibodies, and serum soluble tumour necrosis factor receptor p55 (sTNFR55) concentrations were measured in 87 participants. Up to three stool samples were also analysed microbiologically for detection of asymptomatic intestinal infection. Gastric histology was subsequently analysed in a third subset (n = 37) to assist in interpretation of the pH data. Informed consent was obtained from all participants after a three-stage information and consent process.</p> <p>Results</p> <p>Hypochlorhydria (fasting gastric pH > 4.0) was present in 75 (37%) of participants. In multivariate analysis, HIV infection (OR 4.1; 95%CI 2.2-7.8; <it>P </it>< 0.001) was associated with hypochlorhydria, but taking anti-retroviral treatment (OR 0.16; 0.04-0.67; <it>P </it>= 0.01) and allocation to micronutrient supplementation (OR 0.53; 0.28-0.99; <it>P </it>< 0.05) were protective. Hypochlorhydria was associated with increased risk of salmonellosis. Mild (grade 1) gastric atrophy was found in 5 participants, irrespective of <it>Helicobacter pylori </it>or HIV status. Intestinal permeability, LPS concentrations in serum, anti-LPS IgG, and sTNFR55 concentrations did not differ significantly between micronutrient and placebo groups. Anti-LPS IgM was reduced in the micronutrient recipients (<it>P <</it>0.05).</p> <p>Conclusions</p> <p>We found evidence of a specific effect of HIV on gastric pH which was readily reversed by anti-retroviral therapy and not mediated by gastric atrophy. Micronutrients had a modest impact on gastric pH and one marker of bacterial translocation.</p> <p>Trial Registration</p> <p>Current Controlled Trials ISRCTN31173864</p

    Damaged Intestinal Epithelial Integrity Linked to Microbial Translocation in Pathogenic Simian Immunodeficiency Virus Infections

    Get PDF
    The chronic phase of HIV infection is marked by pathological activation of the immune system, the extent of which better predicts disease progression than either plasma viral load or CD4+ T cell count. Recently, translocation of microbial products from the gastrointestinal tract has been proposed as an underlying cause of this immune activation, based on indirect evidence including the detection of microbial products and specific immune responses in the plasma of chronically HIV-infected humans or SIV-infected Asian macaques. We analyzed tissues from SIV-infected rhesus macaques (RMs) to provide direct in situ evidence for translocation of microbial constituents from the lumen of the intestine into the lamina propria and to draining and peripheral lymph nodes and liver, accompanied by local immune responses in affected tissues. In chronically SIV-infected RMs this translocation is associated with breakdown of the integrity of the epithelial barrier of the gastrointestinal (GI) tract and apparent inability of lamina propria macrophages to effectively phagocytose translocated microbial constituents. By contrast, in the chronic phase of SIV infection in sooty mangabeys, we found no evidence of epithelial barrier breakdown, no increased microbial translocation and no pathological immune activation. Because immune activation is characteristic of the chronic phase of progressive HIV/SIV infections, these findings suggest that increased microbial translocation from the GI tract, in excess of capacity to clear the translocated microbial constituents, helps drive pathological immune activation. Novel therapeutic approaches to inhibit microbial translocation and/or attenuate chronic immune activation in HIV-infected individuals may complement treatments aimed at direct suppression of viral replication

    HIV-1 proteins gp120 and tat induce the epithelial–mesenchymal transition in oral and genital mucosal epithelial cells

    No full text
    corecore