7,323 research outputs found
Recommended from our members
Formation of exoplanetary satellites by pull-down capture.
The large size and wide orbit of the recently announced exomoon candidate Kepler-1625b-i are hard to explain within traditional theories of satellite formation. We show that these properties can be reproduced if the satellite began as a circumstellar co-orbital body with the original core of the giant planet Kepler-1625b. This body was then drawn down into a circumplanetary orbit during the rapid accretion of the giant planet gaseous envelope, a process termed "pull-down capture." Our numerical integrations demonstrate the stability of the original configuration and the capture process. In this model, the exomoon Kepler-1625b-i is the protocore of a giant planet that never accreted a substantial gas envelope. Different initial conditions can give rise to capture into other co-orbital configurations, motivating the search for Trojan-like companions to this and other giant planets
Making GDPR Usable: A Model to Support Usability Evaluations of Privacy
We introduce a new model for evaluating privacy that builds on the criteria
proposed by the EuroPriSe certification scheme by adding usability criteria.
Our model is visually represented through a cube, called Usable Privacy Cube
(or UP Cube), where each of its three axes of variability captures,
respectively: rights of the data subjects, privacy principles, and usable
privacy criteria. We slightly reorganize the criteria of EuroPriSe to fit with
the UP Cube model, i.e., we show how EuroPriSe can be viewed as a combination
of only rights and principles, forming the two axes at the basis of our UP
Cube. In this way we also want to bring out two perspectives on privacy: that
of the data subjects and, respectively, that of the controllers/processors. We
define usable privacy criteria based on usability goals that we have extracted
from the whole text of the General Data Protection Regulation. The criteria are
designed to produce measurements of the level of usability with which the goals
are reached. Precisely, we measure effectiveness, efficiency, and satisfaction,
considering both the objective and the perceived usability outcomes, producing
measures of accuracy and completeness, of resource utilization (e.g., time,
effort, financial), and measures resulting from satisfaction scales. In the
long run, the UP Cube is meant to be the model behind a new certification
methodology capable of evaluating the usability of privacy, to the benefit of
common users. For industries, considering also the usability of privacy would
allow for greater business differentiation, beyond GDPR compliance.Comment: 41 pages, 2 figures, 1 table, and appendixe
Quantification of human lactoferrin as an inflammation marker by an enzyme-linked immunosorbent assay (ELISA)
Decoherence of matter waves by thermal emission of radiation
Emergent quantum technologies have led to increasing interest in decoherence
- the processes that limit the appearance of quantum effects and turn them into
classical phenomena. One important cause of decoherence is the interaction of a
quantum system with its environment, which 'entangles' the two and distributes
the quantum coherence over so many degrees of freedom as to render it
unobservable. Decoherence theory has been complemented by experiments using
matter waves coupled to external photons or molecules, and by investigations
using coherent photon states, trapped ions and electron interferometers. Large
molecules are particularly suitable for the investigation of the
quantum-classical transition because they can store much energy in numerous
internal degrees of freedom; the internal energy can be converted into thermal
radiation and thus induce decoherence. Here we report matter wave
interferometer experiments in which C70 molecules lose their quantum behaviour
by thermal emission of radiation. We find good quantitative agreement between
our experimental observations and microscopic decoherence theory. Decoherence
by emission of thermal radiation is a general mechanism that should be relevant
to all macroscopic bodies.Comment: 5 pages, 4 figure
Epistasis not needed to explain low dN/dS
An important question in molecular evolution is whether an amino acid that
occurs at a given position makes an independent contribution to fitness, or
whether its effect depends on the state of other loci in the organism's genome,
a phenomenon known as epistasis. In a recent letter to Nature, Breen et al.
(2012) argued that epistasis must be "pervasive throughout protein evolution"
because the observed ratio between the per-site rates of non-synonymous and
synonymous substitutions (dN/dS) is much lower than would be expected in the
absence of epistasis. However, when calculating the expected dN/dS ratio in the
absence of epistasis, Breen et al. assumed that all amino acids observed in a
protein alignment at any particular position have equal fitness. Here, we relax
this unrealistic assumption and show that any dN/dS value can in principle be
achieved at a site, without epistasis. Furthermore, for all nuclear and
chloroplast genes in the Breen et al. dataset, we show that the observed dN/dS
values and the observed patterns of amino acid diversity at each site are
jointly consistent with a non-epistatic model of protein evolution.Comment: This manuscript is in response to "Epistasis as the primary factor in
  molecular evolution" by Breen et al. Nature 490, 535-538 (2012
A comprehensive evaluation of colonic mucosal isolates of Sutterella wadsworthensis from inflammatory bowel disease
Peer reviewedPublisher PD
Black Holes in Modified Gravity (MOG)
The field equations for Scalar-Tensor-Vector-Gravity (STVG) or modified
gravity (MOG) have a static, spherically symmetric black hole solution
determined by the mass  with two horizons. The strength of the gravitational
constant is  where  is a parameter. A regular
singularity-free MOG solution is derived using a nonlinear field dynamics for
the repulsive gravitational field component and a reasonable physical
energy-momentum tensor. The Kruskal-Szekeres completion of the MOG black hole
solution is obtained. The Kerr-MOG black hole solution is determined by the
mass , the parameter  and the spin angular momentum . The
equations of motion and the stability condition of a test particle orbiting the
MOG black hole are derived, and the radius of the black hole photosphere and
the shadows cast by the Schwarzschild-MOG and Kerr-MOG black holes are
calculated. A traversable wormhole solution is constructed with a throat
stabilized by the repulsive component of the gravitational field.Comment: 14 pages, 3 figures. Upgraded version of paper to match published
  version in European Physics Journal 
Ten Years of Experience Training Non-Physician Anesthesia Providers in Haiti.
Surgery is increasingly recognized as an effective means of treating a proportion of the global burden of disease, especially in resource-limited countries. Often non-physicians, such as nurses, provide the majority of anesthesia; however, their training and formal supervision is often of low priority or even non-existent. To increase the number of safe anesthesia providers in Haiti, Médecins Sans Frontières has trained nurse anesthetists (NAs) for over 10 years. This article describes the challenges, outcomes, and future directions of this training program. From 1998 to 2008, 24 students graduated. Nineteen (79%) continue to work as NAs in Haiti and 5 (21%) have emigrated. In 2008, NAs were critical in providing anesthesia during a post-hurricane emergency where they performed 330 procedures. Mortality was 0.3% and not associated with lack of anesthesiologist supervision. The completion rate of this training program was high and the majority of graduates continue to work as nurse anesthetists in Haiti. Successful training requires a setting with a sufficient volume and diversity of operations, appropriate anesthesia equipment, a structured and comprehensive training program, and recognition of the training program by the national ministry of health and relevant professional bodies. Preliminary outcomes support findings elsewhere that NAs can be a safe and effective alternative where anesthesiologists are scarce. Training non-physician anesthetists is a feasible and important way to scale up surgical services resource limited settings
Radiative Transfer for Exoplanet Atmospheres
Remote sensing of the atmospheres of distant worlds motivates a firm
understanding of radiative transfer. In this review, we provide a pedagogical
cookbook that describes the principal ingredients needed to perform a radiative
transfer calculation and predict the spectrum of an exoplanet atmosphere,
including solving the radiative transfer equation, calculating opacities (and
chemistry), iterating for radiative equilibrium (or not), and adapting the
output of the calculations to the astronomical observations. A review of the
state of the art is performed, focusing on selected milestone papers.
Outstanding issues, including the need to understand aerosols or clouds and
elucidating the assumptions and caveats behind inversion methods, are
discussed. A checklist is provided to assist referees/reviewers in their
scrutiny of works involving radiative transfer. A table summarizing the
methodology employed by past studies is provided.Comment: 7 pages, no figures, 1 table. Filled in missing information in
  references, main text unchange
- …
