2,256 research outputs found
Higgs production in CP-violating supersymmetric cascade decays: probing the `open hole' at the Large Hadron Collider
A benchmark CP-violating supersymmetric scenario (known as 'CPX-scenario' in
the literature) is studied in the context of the Large Hadron Collider (LHC).
It is shown that the LHC, with low to moderate accumulated luminosity, will be
able to probe the existing `hole' in the - plane, which
cannot be ruled out by the LEP data. We explore the parameter space with
cascade decay of third generation squarks and gluino with CP-violating decay
branching fractions. We propose a multi-channel analysis to probe this
parameter space some of which are background free at an integrated luminosity
of 5-10 fb. Specially, multi-lepton final states (3\l,\, 4\l and like
sign di-lepton) are almost background free and have reach for the
corresponding signals with very early data of LHC for both 14 TeV and 7 TeV
center of mass energy.Comment: 24 pages, 9 figures, references added as in the journal versio
Facile Synthesis of High Quality Graphene Nanoribbons
Graphene nanoribbons have attracted attention for their novel electronic and
spin transport properties1-6, and because nanoribbons less than 10 nm wide have
a band gap that can be used to make field effect transistors. However,
producing nanoribbons of very high quality, or in high volumes, remains a
challenge. Here, we show that pristine few-layer nanoribbons can be produced by
unzipping mildly gas-phase oxidized multiwalled carbon nanotube using
mechanical sonication in an organic solvent. The nanoribbons exhibit very high
quality, with smooth edges (as seen by high-resolution transmission electron
microscopy), low ratios of disorder to graphitic Raman bands, and the highest
electrical conductance and mobility reported to date (up to 5e2/h and 1500
cm2/Vs for ribbons 10-20 nm in width). Further, at low temperature, the
nanoribbons exhibit phase coherent transport and Fabry-Perot interference,
suggesting minimal defects and edge roughness. The yield of nanoribbons was ~2%
of the starting raw nanotube soot material, which was significantly higher than
previous methods capable of producing high quality narrow nanoribbons1. The
relatively high yield synthesis of pristine graphene nanoribbons will make
these materials easily accessible for a wide range of fundamental and practical
applications.Comment: Nature Nanotechnology in pres
Experimental investigation of classical and quantum correlations under decoherence
It is well known that many operations in quantum information processing
depend largely on a special kind of quantum correlation, that is, entanglement.
However, there are also quantum tasks that display the quantum advantage
without entanglement. Distinguishing classical and quantum correlations in
quantum systems is therefore of both fundamental and practical importance. In
consideration of the unavoidable interaction between correlated systems and the
environment, understanding the dynamics of correlations would stimulate great
interest. In this study, we investigate the dynamics of different kinds of
bipartite correlations in an all-optical experimental setup. The sudden change
in behaviour in the decay rates of correlations and their immunity against
certain decoherences are shown. Moreover, quantum correlation is observed to be
larger than classical correlation, which disproves the early conjecture that
classical correlation is always greater than quantum correlation. Our
observations may be important for quantum information processing.Comment: 7 pages, 4 figures, to appear in Nature Communication
Search for Higgs bosons of the Universal Extra Dimensions at the Large Hadron Collider
The Higgs sector of the Universal Extra Dimensions (UED) has a rather
involved setup. With one extra space dimension, the main ingredients to the
construct are the higher Kaluza-Klein (KK) excitations of the Standard Model
Higgs boson and the fifth components of the gauge fields which on
compactification appear as scalar degrees of freedom and can mix with the
former thus leading to physical KK-Higgs states of the scenario. In this work,
we explore in detail the phenomenology of such a Higgs sector of the UED with
the Large Hadron Collider (LHC) in focus. We work out relevant decay branching
fractions involving the KK-Higgs excitations. Possible production modes of the
KK-Higgs bosons are then discussed with an emphasis on their associated
production with the third generation KK-quarks and that under the cascade
decays of strongly interacting UED excitations which turn out to be the only
phenomenologically significant modes. It is pointed out that the collider
searches of such Higgs bosons face generic hardship due to soft end-products
which result from severe degeneracies in the masses of the involved excitations
in the minimal version of the UED (MUED). Generic implications of either
observing some or all of the KK-Higgs bosons at the LHC are discussed.Comment: 25 pages, 9 figures and 1 tabl
Large CP Violation in B_s Meson Mixing with EDM constraint in Supersymmetry
Motivated by the recent measurement of the like-sign dimuon charge asymmetry,
we investigate anomalous CP violation in the B_s- bar{B}_s mixing within the
supersymmetry. We show that when gluino diagrams dominate supersymmetry
contributions, it is very difficult to realize a large B_s- bar{B}_s mixing
phase under the constraint from electric dipole moments barring cancellations.
This constraint can be ameliorated by supposing superparticles decoupled. In
this limit, we find that it is possible to achieve the large CP asymmetry, and
the branching ratio of B_s -> mu^+ mu^- tends to become sizable.Comment: 20 pages, 5 figure
Detection of the pairwise kinematic Sunyaev-Zel'dovich effect with BOSS DR11 and the Atacama Cosmology Telescope
We present a new measurement of the kinematic Sunyaev-Zeldovich effect using
data from the Atacama Cosmology Telescope (ACT) and the Baryon Oscillation
Spectroscopic Survey (BOSS). Using 600 square degrees of overlapping sky area,
we evaluate the mean pairwise baryon momentum associated with the positions of
50,000 bright galaxies in the BOSS DR11 Large Scale Structure catalog. A
non-zero signal arises from the large-scale motions of halos containing the
sample galaxies. The data fits an analytical signal model well, with the
optical depth to microwave photon scattering as a free parameter determining
the overall signal amplitude. We estimate the covariance matrix of the mean
pairwise momentum as a function of galaxy separation, using microwave sky
simulations, jackknife evaluation, and bootstrap estimates. The most
conservative simulation-based errors give signal-to-noise estimates between 3.6
and 4.1 for varying galaxy luminosity cuts. We discuss how the other error
determinations can lead to higher signal-to-noise values, and consider the
impact of several possible systematic errors. Estimates of the optical depth
from the average thermal Sunyaev-Zeldovich signal at the sample galaxy
positions are broadly consistent with those obtained from the mean pairwise
momentum signal.Comment: 15 pages, 8 figures, 2 table
Bipolar supercurrent in graphene
Graphene -a recently discovered one-atom-thick layer of graphite- constitutes
a new model system in condensed matter physics, because it is the first
material in which charge carriers behave as massless chiral relativistic
particles. The anomalous quantization of the Hall conductance, which is now
understood theoretically, is one of the experimental signatures of the peculiar
transport properties of relativistic electrons in graphene. Other unusual
phenomena, like the finite conductivity of order 4e^2/h at the charge
neutrality (or Dirac) point, have come as a surprise and remain to be
explained. Here, we study the Josephson effect in graphene. Our experiments
rely on mesoscopic superconducting junctions consisting of a graphene layer
contacted by two closely spaced superconducting electrodes, where the charge
density can be controlled by means of a gate electrode. We observe a
supercurrent that, depending on the gate voltage, is carried by either
electrons in the conduction band or by holes in the valence band. More
importantly, we find that not only the normal state conductance of graphene is
finite, but also a finite supercurrent can flow at zero charge density. Our
observations shed light on the special role of time reversal symmetry in
graphene and constitute the first demonstration of phase coherent electronic
transport at the Dirac point.Comment: Under review, 12 pages, 4 Figs., suppl. info (v2 identical, resolved
file problems
Quantum Discord and entropic measures of quantum correlations: Optimization and behavior in finite spin chains
We discuss a generalization of the conditional entropy and one-way
information deficit in quantum systems, based on general entropic forms. The
formalism allows to consider simple entropic forms for which a closed
evaluation of the associated optimization problem in qudit-qubit systems is
shown to become feasible, allowing to approximate that of the quantum discord.
As application, we examine quantum correlations of spin pairs in the exact
ground state of finite spin chains in a magnetic field through the quantum
discord and information deficit. While these quantities show a similar
behavior, their optimizing measurements exhibit significant differences, which
can be understood and predicted through the previous approximations. The
remarkable behavior of these quantities in the vicinity of transverse and
non-transverse factorizing fields is also discussed.Comment: 10 pages, 3 figure
Gaugino Anomaly Mediated SUSY Breaking: phenomenology and prospects for the LHC
We examine the supersymmetry phenomenology of a novel scenario of
supersymmetry (SUSY) breaking which we call Gaugino Anomaly Mediation, or
inoAMSB. This is suggested by recent work on the phenomenology of flux
compactified type IIB string theory. The essential features of this scenario
are that the gaugino masses are of the anomaly-mediated SUSY breaking (AMSB)
form, while scalar and trilinear soft SUSY breaking terms are highly
suppressed. Renormalization group effects yield an allowable sparticle mass
spectrum, while at the same time avoiding charged LSPs; the latter are common
in models with negligible soft scalar masses, such as no-scale or gaugino
mediation models. Since scalar and trilinear soft terms are highly suppressed,
the SUSY induced flavor and CP-violating processes are also suppressed. The
lightest SUSY particle is the neutral wino, while the heaviest is the gluino.
In this model, there should be a strong multi-jet +etmiss signal from squark
pair production at the LHC. We find a 100 fb^{-1} reach of LHC out to
m_{3/2}\sim 118 TeV, corresponding to a gluino mass of \sim 2.6 TeV. A double
mass edge from the opposite-sign/same flavor dilepton invariant mass
distribution should be visible at LHC; this, along with the presence of short--
but visible-- highly ionizing tracks from quasi-stable charginos, should
provide a smoking gun signature for inoAMSB.Comment: 30 pages including 14 .eps figure
A fourth generation, anomalous like-sign dimuon charge asymmetry and the LHC
A fourth chiral generation, with in the range GeV and a moderate value of the CP-violating phase can explain the
anomalous like-sign dimuon charge asymmetry observed recently by the D0
collaboration. The required parameters are found to be consistent with
constraints from other and decays. The presence of such quarks, apart
from being detectable in the early stages of the LHC, would also have important
consequences in the electroweak symmetry breaking sector.Comment: 18 pages, 9 figures, Figure 1 is modified, more discussions are added
in section 2. new references adde
- …
