169 research outputs found
Potentiation of thrombus instability: a contributory mechanism to the effectiveness of antithrombotic medications
© The Author(s) 2018The stability of an arterial thrombus, determined by its structure and ability to resist endogenous fibrinolysis, is a major determinant of the extent of infarction that results from coronary or cerebrovascular thrombosis. There is ample evidence from both laboratory and clinical studies to suggest that in addition to inhibiting platelet aggregation, antithrombotic medications have shear-dependent effects, potentiating thrombus fragility and/or enhancing endogenous fibrinolysis. Such shear-dependent effects, potentiating the fragility of the growing thrombus and/or enhancing endogenous thrombolytic activity, likely contribute to the clinical effectiveness of such medications. It is not clear how much these effects relate to the measured inhibition of platelet aggregation in response to specific agonists. These effects are observable only with techniques that subject the growing thrombus to arterial flow and shear conditions. The effects of antithrombotic medications on thrombus stability and ways of assessing this are reviewed herein, and it is proposed that thrombus stability could become a new target for pharmacological intervention.Peer reviewedFinal Published versio
Sex peptide receptor-regulated polyandry mediates the balance of pre- and post-copulatory sexual selection in Drosophila
Polyandry prolongs sexual selection on males by forcing ejaculates to compete for fertilisation. Recent theory predicts that increasing polyandry may weaken pre-copulatory sexual selection on males and increase the relative importance of post-copulatory sexual selection, but experimental tests of this prediction are lacking. Here, we manipulate the polyandry levels in groups of Drosophila melanogaster by deletion of the female sex peptide receptor. We show that groups in which the sex-peptide-receptor is absent in females (SPR-) have higher polyandry, and – as a result – weaker pre-copulatory sexual selection on male mating success, compared to controls. Post-copulatory selection on male paternity share is relatively more important in SPR- groups, where males gain additional paternity by mating repeatedly with the same females. These results provide experimental evidence that elevated polyandry weakens pre-copulatory sexual selection on males, shifts selection to post-copulatory events, and that the sex peptide pathway can play a key role in modulating this process in Drosophil
Prospective assessment of Y-chromosome microdeletions and reproductive outcomes among infertile couples of Japanese and African origin
BACKGROUND: To compare the frequency of Y-chromosome microdeletions in Japanese and African azoospermic and oligozoospermic men and describe embryo characteristics and reproductive outcome following in vitro fertilization (IVF) with intracytoplasmic sperm injection (ICSI). METHODS: Our study was performed prospectively at two centers, a private IVF clinic and a university hospital. Japanese and African (Tanzanian) men with nonobstructive azoospermia (NOA) and oligozoospermia (concentration < 5 × 10(6 )/ml) were evaluated for Y-chromosome microdeletions (n = 162). Of the 47 men with NOA, 26 were Japanese and 21 were Africans. Of the 115 men with oligozoospermia, 87 were Japanese and 28 were Africans. Reproductive outcomes of patients with Y-chromosome microdeletions were then compared with those of 19 IVF+ICSI cycles performed on couples with Y-chromosome intact males/tubal factor infertility which served as a control group. RESULTS: Seven azoospermic and oligozoospermic patients had Y-chromosome deletions; the total number of deletions in the AZFc region was five. There was only one deletion in the AZFa region and one complete deletion involving all three regions (AZFa, b, and c) within AZF. In our study population, microdeletion frequency among Japanese men was 6.2% (95% CI, 4.25% – 14.45%), whereas no deletions were identified in the African group (95% CI, 0.0% – 7.27%). The difference between the two groups was not statistically significant, however. Embryos derived from ICSI utilizing sperm with Y-chromosome microdeletion showed reduced rates of fertilization, blastocyst development, implantation, and pregnancy compared to the Y-chromosome intact group, although these observed differences were not statistically significant. CONCLUSION: The observed frequency of Y-chromosome microdeletion was 6.2% among Japanese azoospermic and oligozoospermic males; no microdeletions were identified among our African study patients. In this population of couples undergoing IVF+ICSI, there was no statistically significant difference in embryo characteristics or pregnancy outcome between patients with Y-chromosome microdeletion and those with an intact Y-chromosome
Non-Linear Elasticity of Extracellular Matrices Enables Contractile Cells to Communicate Local Position and Orientation
Most tissue cells grown in sparse cultures on linearly elastic substrates typically display a small, round phenotype on soft substrates and become increasingly spread as the modulus of the substrate increases until their spread area reaches a maximum value. As cell density increases, individual cells retain the same stiffness-dependent differences unless they are very close or in molecular contact. On nonlinear strain-stiffening fibrin gels, the same cell types become maximally spread even when the low strain elastic modulus would predict a round morphology, and cells are influenced by the presence of neighbors hundreds of microns away. Time lapse microscopy reveals that fibroblasts and human mesenchymal stem cells on fibrin deform the substrate by several microns up to five cell lengths away from their plasma membrane through a force limited mechanism. Atomic force microscopy and rheology confirm that these strains locally and globally stiffen the gel, depending on cell density, and this effect leads to long distance cell-cell communication and alignment. Thus cells are acutely responsive to the nonlinear elasticity of their substrates and can manipulate this rheological property to induce patterning
‘Classical' but not ‘other' mutations of EGFR kinase domain are associated with clinical outcome in gefitinib-treated patients with non-small cell lung cancer
‘Classical' mutations in the EGFR tyrosine kinase domain (exons 18, 19 and 21) have been associated with sensitivity to tyrosine kinase inhibitors (TKIs) in patients with NSCLC. The aim of the current study was to evaluate whether other than the classical G719X, DEL19 and L858R mutations of EGFR confer sensitivity to TKIs. Genomic DNA was extracted from microdissected formalin-fixed paraffin-embedded tumour tissue from 86 patients treated with gefitinib. Exons 18, 19 and 21 were amplified and subjected to direct sequencing. Eleven (13%) patients harboured the classical exon's 18, 19 and 21 mutations, while 14 (16%) had ‘other' variants. There was a significantly higher percentage of ‘never-smoker' patients with ‘classical' EGFR mutations (P=0.002). Among patients with ‘classical' mutations 3 patients achieved PR and 7 SD, while in the ‘other' mutations group 10 patients had SD as best response. In the wild-type group, there were 3 patients with PR and 25 with SD. Median TTP was 16, 64 (P=0.002) and 21 weeks and median survival was 36, 78 and 67 weeks for patients with wild-type, ‘classical' and ‘other' EGFR mutations, respectively. The clinical relevance of ‘other' EGFR mutation variants remains uncertain and requires further assessment in a prospective study
Time-resolved single-crystal X-ray crystallography
In this chapter the development of time-resolved crystallography is traced from its beginnings more than 30 years ago. The importance of being able to “watch” chemical processes as they occur rather than just being limited to three-dimensional pictures of the reactant and final product is emphasised, and time-resolved crystallography provides the opportunity to bring the dimension of time into the crystallographic experiment. The technique has evolved in time with developments in technology: synchrotron radiation, cryoscopic techniques, tuneable lasers, increased computing power and vastly improved X-ray detectors. The shorter the lifetime of the species being studied, the more complex is the experiment. The chapter focusses on the results of solid-state reactions that are activated by light, since this process does not require the addition of a reagent to the crystalline material and the single-crystalline nature of the solid may be preserved. Because of this photoactivation, time-resolved crystallography is often described as “photocrystallography”. The initial photocrystallographic studies were carried out on molecular complexes that either underwent irreversible photoactivated processes where the conversion took hours or days. Structural snapshots were taken during the process. Materials that achieved a metastable state under photoactivation and the excited (metastable) state had a long enough lifetime for the data from the crystal to be collected and the structure solved. For systems with shorter lifetimes, the first time-resolved results were obtained for macromolecular structures, where pulsed lasers were used to pump up the short lifetime excited state species and their structures were probed by using synchronised X-ray pulses from a high-intensity source. Developments in molecular crystallography soon followed, initially with monochromatic X-ray radiation, and pump-probe techniques were used to establish the structures of photoactivated molecules with lifetimes in the micro- to millisecond range. For molecules with even shorter lifetimes in the sub-microsecond range, Laue diffraction methods (rather than using monochromatic radiation) were employed to speed up the data collections and reduce crystal damage. Future developments in time-resolved crystallography are likely to involve the use of XFELs to complete “single-shot” time-resolved diffraction studies that are already proving successful in the macromolecular crystallographic field.</p
Role of the IFN I system against the VHSV infection in juvenile Senegalese sole (Solea senegalensis)
Minimally invasive surgery and cancer: controversies part 1
Perhaps there is no more important issue in the care of surgical patients than the appropriate use of minimally invasive surgery (MIS) for patients with cancer. Important advances in surgical technique have an impact on early perioperative morbidity, length of hospital stay, pain management, and quality of life issues, as clearly proved with MIS. However, for oncology patients, historically, the most important clinical questions have been answered in the context of prospective randomized trials. Important considerations for MIS and cancer have been addressed, such as what are the important immunologic consequences of MIS versus open surgery and what is the role of laparoscopy in the staging of gastrointestinal cancers? This review article discusses many of the key controversies in the minimally invasive treatment of cancer using the pro–con debate format
- …