37 research outputs found

    Roux-En Y Gastric Bypass Surgery Induces Genome-Wide Promoter-Specific Changes in DNA Methylation in Whole Blood of Obese Patients

    Get PDF
    Context DNA methylation has been proposed to play a critical role in many cellular and biological processes. Objective To examine the influence of Roux-en-Y gastric bypass (RYGB) surgery on genome-wide promoter-specific DNA methylation in obese patients. Promoters are involved in the initiation and regulation of gene transcription. Methods Promoter-specific DNA methylation in whole blood was measured in 11 obese patients (presurgery BMI >35 kg/m2, 4 females), both before and 6 months after RYGB surgery, as well as once only in a control group of 16 normal-weight men. In addition, body weight and fasting plasma glucose were measured after an overnight fast. Results The mean genome-wide distance between promoter-specific DNA methylation of obese patients at six months after RYGB surgery and controls was shorter, as compared to that at baseline (p<0.001). Moreover, postsurgically, the DNA methylation of 51 promoters was significantly different from corresponding values that had been measured at baseline (28 upregulated and 23 downregulated, P<0.05 for all promoters, Bonferroni corrected). Among these promoters, an enrichment for genes involved in metabolic processes was found (n = 36, P<0.05). In addition, the mean DNA methylation of these 51 promoters was more similar after surgery to that of controls, than it had been at baseline (P<0.0001). When controlling for the RYGB surgery-induced drop in weight (-24% of respective baseline value) and fasting plasma glucose concentration (-16% of respective baseline value), the DNA methylation of only one out of 51 promoters (~2%) remained significantly different between the pre-and postsurgery time points. Conclusions Epigenetic modifications are proposed to play an important role in the development of and predisposition to metabolic diseases, including type II diabetes and obesity. Thus, our findings may form the basis for further investigations to unravel the molecular effects of gastric bypass surgery. Clinical Trial ClinicalTrials.gov NCT0173074

    Many obesity-associated SNPs strongly associate with DNA methylation changes at proximal promoters and enhancers

    Get PDF
    Background: The mechanisms by which genetic variants, such as single nucleotide polymorphisms (SNPs), identified in genome-wide association studies act to influence body mass remain unknown for most of these SNPs, which continue to puzzle the scientific community. Recent evidence points to the epigenetic and chromatin states of the genome as having important roles. Methods: We genotyped 355 healthy young individuals for 52 known obesity-associated SNPs and obtained DNA methylation levels in their blood using the Illumina 450 K BeadChip. Associations between alleles and methylation at proximal cytosine residues were tested using a linear model adjusted for age, sex, weight category, and a proxy for blood cell type counts. For replication in other tissues, we used two open-access datasets (skin fibroblasts, n = 62; four brain regions, n = 121-133) and an additional dataset in subcutaneous and visceral fat (n = 149). Results: We found that alleles at 28 of these obesity-associated SNPs associate with methylation levels at 107 proximal CpG sites. Out of 107 CpG sites, 38 are located in gene promoters, including genes strongly implicated in obesity (MIR148A, BDNF, PTPMT1, NR1H3, MGAT1, SCGB3A1, HOXC12, PMAIP1, PSIP1, RPS10-NUDT3, RPS10, SKOR1, MAP2K5, SIX5, AGRN, IMMP1L, ELP4, ITIH4, SEMA3G, POMC, ADCY3, SSPN, LGR4, TUFM, MIR4721, SULT1A1, SULT1A2, APOBR, CLN3, SPNS1, SH2B1, ATXN2L, and IL27). Interestingly, the associated SNPs are in known eQTLs for some of these genes. We also found that the 107 CpGs are enriched in enhancers in peripheral blood mononuclear cells. Finally, our results indicate that some of these associations are not blood-specific as we successfully replicated four associations in skin fibroblasts. Conclusions: Our results strongly suggest that many obesity-associated SNPs are associated with proximal gene regulation, which was reflected by association of obesity risk allele genotypes with differential DNA methylation. This study highlights the importance of DNA methylation and other chromatin marks as a way to understand the molecular basis of genetic variants associated with human diseases and traits

    The Origin of GPCRs: Identification of Mammalian like Rhodopsin, Adhesion, Glutamate and Frizzled GPCRs in Fungi

    Get PDF
    G protein-coupled receptors (GPCRs) in humans are classified into the five main families named Glutamate, Rhodopsin, Adhesion, Frizzled and Secretin according to the GRAFS classification. Previous results show that these mammalian GRAFS families are well represented in the Metazoan lineages, but they have not been shown to be present in Fungi. Here, we systematically mined 79 fungal genomes and provide the first evidence that four of the five main mammalian families of GPCRs, namely Rhodopsin, Adhesion, Glutamate and Frizzled, are present in Fungi and found 142 novel sequences between them. Significantly, we provide strong evidence that the Rhodopsin family emerged from the cAMP receptor family in an event close to the split of Opisthokonts and not in Placozoa, as earlier assumed. The Rhodopsin family then expanded greatly in Metazoans while the cAMP receptor family is found in 3 invertebrate species and lost in the vertebrates. We estimate that the Adhesion and Frizzled families evolved before the split of Unikonts from a common ancestor of all major eukaryotic lineages. Also, the study highlights that the fungal Adhesion receptors do not have N-terminal domains whereas the fungal Glutamate receptors have a broad repertoire of mammalian-like N-terminal domains. Further, mining of the close unicellular relatives of the Metazoan lineage, Salpingoeca rosetta and Capsaspora owczarzaki, obtained a rich group of both the Adhesion and Glutamate families, which in particular provided insight to the early emergence of the N-terminal domains of the Adhesion family. We identified 619 Fungi specific GPCRs across 79 genomes and revealed that Blastocladiomycota and Chytridiomycota phylum have Metazoan-like GPCRs rather than the GPCRs specific for Fungi. Overall, this study provides the first evidence of the presence of four of the five main GRAFS families in Fungi and clarifies the early evolutionary history of the GPCR superfamily

    The obesity gene, TMEM18, is of ancient origin, found in majority of neuronal cells in all major brain regions and associated with obesity in severely obese children

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>TMEM18 is a hypothalamic gene that has recently been linked to obesity and BMI in genome wide association studies. However, the functional properties of TMEM18 are obscure.</p> <p>Methods</p> <p>The evolutionary history of TMEM18 was inferred using phylogenetic and bioinformatic methods. The gene's expression profile was investigated with real-time PCR in a panel of rat and mouse tissues and with immunohistochemistry in the mouse brain. Also, gene expression changes were analyzed in three feeding-related mouse models: food deprivation, reward and diet-induced increase in body weight. Finally, we genotyped 502 severely obese and 527 healthy Swedish children for two SNPs near TMEM18 (rs6548238 and rs756131).</p> <p>Results</p> <p>TMEM18 was found to be remarkably conserved and present in species that diverged from the human lineage over 1500 million years ago. The TMEM18 gene was widely expressed and detected in the majority of cells in all major brain regions, but was more abundant in neurons than other cell types. We found no significant changes in the hypothalamic and brainstem expression in the feeding-related mouse models. There was a strong association for two SNPs (rs6548238 and rs756131) of the TMEM18 locus with an increased risk for obesity (p = 0.001 and p = 0.002).</p> <p>Conclusion</p> <p>We conclude that TMEM18 is involved in both adult and childhood obesity. It is one of the most conserved human obesity genes and it is found in the majority of all brain sites, including the hypothalamus and the brain stem, but it is not regulated in these regions in classical energy homeostatic models.</p

    A comparative analysis of host responses to avian influenza infection in ducks and chickens highlights a role for the interferon-induced transmembrane proteins in viral resistance

    Get PDF
    Chickens are susceptible to infection with a limited number of Influenza A viruses and are a potential source of a human influenza pandemic. In particular, H5 and H7 haemagglutinin subtypes can evolve from low to highly pathogenic strains in gallinaceous poultry. Ducks on the other hand are a natural reservoir for these viruses and are able to withstand most avian influenza strains. Results: Transcriptomic sequencing of lung and ileum tissue samples from birds infected with high (H5N1) and low (H5N2) pathogenic influenza viruses has allowed us to compare the early host response to these infections in both these species. Chickens (but not ducks) lack the intracellular receptor for viral ssRNA, RIG-I and the gene for an important RIG-I binding protein, RNF135. These differences in gene content partly explain the differences in host responses to low pathogenic and highly pathogenic avian influenza virus in chicken and ducks. We reveal very different patterns of expression of members of the interferon-induced transmembrane protein (IFITM) gene family in ducks and chickens. In ducks, IFITM1, 2 and 3 are strongly up regulated in response to highly pathogenic avian influenza, where little response is seen in chickens. Clustering of gene expression profiles suggests IFITM1 and 2 have an anti-viral response and IFITM3 may restrict avian influenza virus through cell membrane fusion. We also show, through molecular phylogenetic analyses, that avian IFITM1 and IFITM3 genes have been subject to both episodic and pervasive positive selection at specific codons. In particular, avian IFITM1 showed evidence of positive selection in the duck lineage at sites known to restrict influenza virus infection. Conclusions: Taken together these results support a model where the IFITM123 protein family and RIG-I all play a crucial role in the tolerance of ducks to highly pathogenic and low pathogenic strains of avian influenza viruses when compared to the chicken
    corecore