12 research outputs found

    Plasmodium Infection Is Associated with Impaired Hepatic Dimethylarginine Dimethylaminohydrolase Activity and Disruption of Nitric Oxide Synthase Inhibitor/Substrate Homeostasis.

    Get PDF
    Inhibition of nitric oxide (NO) signaling may contribute to pathological activation of the vascular endothelium during severe malaria infection. Dimethylarginine dimethylaminohydrolase (DDAH) regulates endothelial NO synthesis by maintaining homeostasis between asymmetric dimethylarginine (ADMA), an endogenous NO synthase (NOS) inhibitor, and arginine, the NOS substrate. We carried out a community-based case-control study of Gambian children to determine whether ADMA and arginine homeostasis is disrupted during severe or uncomplicated malaria infections. Circulating plasma levels of ADMA and arginine were determined at initial presentation and 28 days later. Plasma ADMA/arginine ratios were elevated in children with acute severe malaria compared to 28-day follow-up values and compared to children with uncomplicated malaria or healthy children (p<0.0001 for each comparison). To test the hypothesis that DDAH1 is inactivated during Plasmodium infection, we examined DDAH1 in a mouse model of severe malaria. Plasmodium berghei ANKA infection inactivated hepatic DDAH1 via a post-transcriptional mechanism as evidenced by stable mRNA transcript number, decreased DDAH1 protein concentration, decreased enzyme activity, elevated tissue ADMA, elevated ADMA/arginine ratio in plasma, and decreased whole blood nitrite concentration. Loss of hepatic DDAH1 activity and disruption of ADMA/arginine homeostasis may contribute to severe malaria pathogenesis by inhibiting NO synthesis

    Tumour Cannabinoid CB1 Receptor and Phosphorylated Epidermal Growth Factor Receptor Expression Are Additive Prognostic Markers for Prostate Cancer

    Get PDF
    BACKGROUND: In cultured prostate cancer cells, down-regulation of epidermal growth factor receptor (EGFR) has been implicated in mediating the antiproliferative effect of the endogenous cannabinoid (CB) ligand anandamide. Using a well-characterised cohort of prostate cancer patients, we have previously reported that expression levels of phosphorylated EGFR (pEGFR-IR) and CB(1) receptor (CB(1)IR) in tumour tissue at diagnosis are markers of disease-specific survival, but it is not known whether the two markers interact in terms of their influence on disease severity at diagnosis and disease outcome. METHODOLOGY/PRINCIPAL FINDINGS: Data from a cohort of 419 patients who were diagnosed with prostate cancer at transurethral resection for voiding difficulties was used. Scores for both tumour CB(1)IR and pEGFR-IR were available in the database. Of these, 235 had been followed by expectancy until the appearance of metastases. For patients scored for both parameters, Cox proportional-hazards regression analyses using optimal cut-off scores indicated that the two measures provided additional diagnostic information not only to each other, but to that provided by the tumour stage and the Gleason score. When the cases were divided into subgroups on the basis of these cut-off scores, the patients with both CB(1)IR and pEGFR-IR scores above their cut-off had a poorer disease-specific survival and showed a more severe pathology at diagnosis than patients with high pEGFR-IR scores but with CB(1)IR scores below the cut-off. CONCLUSIONS/SIGNIFICANCE: These data indicate that a high tumour CB(1) receptor expression at diagnosis augments the deleterious effects of a high pEGFR expression upon disease-specific survival

    Recoupling the cardiac nitric oxide synthases: Tetrahydrobiopterin synthesis and recycling

    No full text
    Nitric oxide (NO), a key regulator of cardiovascular function, is synthesized from L-arginine and oxygen by the enzyme nitric oxide synthase (NOS). This reaction requires tetrahydrobiopterin (BH4) as a cofactor. BH4 is synthesized from guanosine triphosphate (GTP) by GTP cyclohydrolase I (GTPCH) and recycled from 7,8-dihydrobiopterin (BH2) by dihydrofolate reductase. Under conditions of low BH4 bioavailability relative to NOS or BH2, oxygen activation is "uncoupled" from L-arginine oxidation, and NOS produces superoxide (O2 -) instead of NO. NOS-derived superoxide reacts with NO to produce peroxynitrite (ONOO-), a highly reactive anion that rapidly oxidizes BH4 and propagates NOS uncoupling. BH4 depletion and NOS uncoupling contribute to overload-induced heart failure, hypertension, ischemia/reperfusion injury, and atrial fibrillation. L-arginine depletion, methylarginine accumulation, and S-glutathionylation of NOS also promote uncoupling. Recoupling NOS is a promising approach to treating myocardial and vascular dysfunction associated with heart failure. Β© Springer Science+Business Media, LLC 2012

    Recoupling the cardiac nitric oxide synthases: tetrahydrobiopterin synthesis and recycling.

    Get PDF
    Nitric oxide (NO), a key regulator of cardiovascular function, is synthesized from L-arginine and oxygen by the enzyme nitric oxide synthase (NOS). This reaction requires tetrahydrobiopterin (BH4) as a cofactor. BH4 is synthesized from guanosine triphosphate (GTP) by GTP cyclohydrolase I (GTPCH) and recycled from 7,8-dihydrobiopterin (BH2) by dihydrofolate reductase. Under conditions of low BH4 bioavailability relative to NOS or BH2, oxygen activation is "uncoupled" from L-arginine oxidation, and NOS produces superoxide (O (2) (-) ) instead of NO. NOS-derived superoxide reacts with NO to produce peroxynitrite (ONOO(-)), a highly reactive anion that rapidly oxidizes BH4 and propagates NOS uncoupling. BH4 depletion and NOS uncoupling contribute to overload-induced heart failure, hypertension, ischemia/reperfusion injury, and atrial fibrillation. L-arginine depletion, methylarginine accumulation, and S-glutathionylation of NOS also promote uncoupling. Recoupling NOS is a promising approach to treating myocardial and vascular dysfunction associated with heart failure

    Interleukin-10 regulates hepcidin in Plasmodium falciparum malaria

    Get PDF
    BACKGROUND: Acute malarial anemia remains a major public health problem. Hepcidin, the major hormone controlling the availability of iron, is raised during acute and asymptomatic parasitemia. Understanding the role and mechanism of raised hepcidin and so reduced iron availability during infection is critical to establish evidence-based guidelines for management of malaria anemia. Our recent clinical evidence suggests a potential role of IL-10 in the regulation of hepcidin in patients with acute P. falciparum malaria. METHODS: We have measured secretion of hepcidin by primary macrophages and the hepatoma cell line HepG2 stimulated with IL-10, IL-6 and Plasmodium falciparum-infected erythrocytes. FINDINGS: We have observed that IL-10 and IL-6 production increased in primary macrophages when these cells were co-cultured with Plasmodium falciparum-infected erythrocytes. We found that IL-10 induced hepcidin secretion in primary macrophages in a dose-dependent manner but not in HepG2 cells. These effects were mediated through signal transducer and activator of transcription (STAT) 3-phosphorylation and completely abrogated by a specific STAT3 inhibitor. CONCLUSION: IL-10 can directly regulate hepcidin in primary macrophages but not in HepG2 cells. This effect can be modulated by Plasmodium falciparum. The results are consistent with a role for IL-10 in modulating iron metabolism during acute phase of infection
    corecore