386 research outputs found

    Contribution of the antibiotic chloramphenicol and its analogues as precursors of dichloroacetamide and other disinfection byproducts in drinking water

    Get PDF
    Dichloroacetamide (DCAcAm), a disinfection byproduct, has been detected in drinking water. Previous research showed that amino acids may be DCAcAm precursors. However, other precursors may be present. This study explored the contribution of the antibiotic chloramphenicol (CAP) and two of its analogues (thiamphenicol, TAP; florfenicol, FF) (referred to collectively as CAPs), which occur in wastewater-impacted source waters, to the formation of DCAcAm. Their formation yields were compared to free and combined amino acids, and they were investigated in filtered waters from drinking-water-treatment plants, heavily wastewater-impacted natural waters, and secondary effluents from wastewater treatment plants. CAPs had greater DCAcAm formation potential than two representative amino acid precursors. However, in drinking waters with ng/L levels of CAPs, they will not contribute as much to DCAcAm formation as the μg/L levels of amino acids. Also, the effect of advanced oxidation processes (AOPs) on DCAcAm formation from CAPs in real water samples during subsequent chlorination was evaluated. Preoxidation of CAPs with AOPs reduced the formation of DCAcAm during postchlorination. The results of this study suggest that CAPs should be considered as possible precursors of DCAcAm, especially in heavily wastewater-impacted waters

    Development of a mercury free ultraviolet high pressure plasma discharge for disinfection

    Get PDF
    Ultraviolet (UV) disinfection is a critical and growing application for the disinfection of water. Current UV systems for disinfection applications are designed around the use of Low Pressure (LP) and High Pressure (HP) mercury based lamps. Increasing demand to reduce and ideally remove the use of mercury requires innovative adaptations and novel approaches to current technology. A potential alternative technology could be Light Emitting Diodes (LEDs) however with current low efficiencies, high costs and low operating powers a development gap for a high power mercury source has been identified. A mercury free tellurium based high pressure plasma was developed and assessed. Although relatively low efficiencies were measured compared to current mercury based technology rapid improvements are likely obtainable. Such an approach enables a novel adaptation to current technology utilising established; manufacturing facilities, approaches of UV system design and validation protocols. As a consequence it offers the potential for a rapid low cost transition to mercury free UV disinfection where no alternative is currently available

    Rejection of organic micro-pollutants from water by a tubular, hydrophilic pervaporative membrane designed for irrigation applications

    No full text
    The links between chemical properties, including those relating to molecular size, solubility, hydrophobicity and vapour pressure, and rejection of model aromatic micro-pollutants by a tubular, hydrophilic polymer pervaporation membrane designed for irrigation applications were investigated. Open air experiments were conducted at room temperature for individual solutions of fluorene, naphthalene, phenol, 1,2-dichlorobenzene, 1,2-diethylbenzene and 2-phenoxyethanol. Percentage rejection generally increased with increased molecular size for the model micro-pollutants (47–86%). Molecular weight and log Kow had the strongest positive relationships with rejection, as demonstrated by respective correlation coefficients of r = 0.898 and 0.824. Rejection was also strongly negatively correlated with aqueous solubility and H-bond δ. However, properties which relate to vapour phase concentrations of the micro-pollutants were not well correlated with rejection. Thus, physicochemical separation processes, rather than vapour pressure, drive removal of aromatic contaminants by the investigated pervaporation tube. This expanded knowledge could be utilized in considering practical applications of pervaporative irrigation systems for treating organic-contaminated waters such as oilfield-produced waters

    Source separation of human excreta: effect on resource recovery via pyrolysis

    Get PDF
    More people globally are now using on-site sanitation technologies than sewered connections. The management of faecal sludge generated by on-site facilities is still challenging and requires an understanding of all sanitation service chain components and their interactions; from source conditions to treatment and resource recovery. This study aimed to improve the current lack of knowledge regarding these interactions, by establishing a quantifiable relationship between human excreta source separation and resource recovery via pyrolysis. The effects of source separation of faeces and urine on biochar quality were investigated for different pyrolysis temperatures (450 °C, 550 °C, 650 °C) and this information was used to assess energy and nutrient recovery. Results quantify the benefits of urine diversion for nitrogen recovery (70% of total N losses during thermal treatment avoided) and show an increase in the liming potential of the produced faecal-based biochars. The quality of produced solid fuels is also improved when source-separated faeces (SSF) are used as a feedstock for pyrolysis, including a 50% increase in char calorific value. On the other hand, biochars from mixed urine and faeces (MUF) are more rich in phosphorus and potassium, and surface morphology investigation indicates higher porosity compared to SSF biochars. The high salinity of MUF biochars should be considered before agricultural applications. For both biochar types (SSF, MUF), the presence of phosphate compounds of high fertiliser value was confirmed by X-ray diffraction analysis, and temperatures around 500 °C are recommended to optimise nutrient and carbon behaviour when pyrolysing human excreta. These findings can be used for the design of circular faecal sludge management systems, linking resource recovery objectives to source conditions, and vice-versa. Ultimately, achieving consistent resource recovery from human excreta can act as an incentive for universal access to safe and sustainable sanitation

    An optimized analytical method for the simultaneous detection of iodoform, iodoacetic acid, and other trihalomethanes and haloacetic acids in drinking water

    Get PDF
    An optimized method is presented using liquid-liquid extraction and derivatization for the extraction of iodoacetic acid (IAA) and other haloacetic acids (HAA9) and direct extraction of iodoform (IF) and other trihalomethanes (THM4) from drinking water, followed by detection by gas chromatography with electron capture detection (GC-ECD). A Doehlert experimental design was performed to determine the optimum conditions for the five most significant factors in the derivatization step: namely, the volume and concentration of acidic methanol (optimized values  = 15%, 1 mL), the volume and concentration of Na2SO4 solution (129 g/L, 8.5 mL), and the volume of saturated NaHCO3 solution (1 mL). Also, derivatization time and temperature were optimized by a two-variable Doehlert design, resulting in the following optimized parameters: an extraction time of 11 minutes for IF and THM4 and 14 minutes for IAA and HAA9; mass of anhydrous Na2SO4 of 4 g for IF and THM4 and 16 g for IAA and HAA9; derivatization time of 160 min and temperature at 40°C. Under optimal conditions, the optimized procedure achieves excellent linearity (R2 ranges 0.9990–0.9998), low detection limits (0.0008–0.2 µg/L), low quantification limits (0.008–0.4 µg/L), and good recovery (86.6%–106.3%). Intra- and inter-day precision were less than 8.9% and 8.8%, respectively. The method was validated by applying it to the analysis of raw, flocculated, settled, and finished waters collected from a water treatment plant in China

    Water Vapor Transport in Soils from a Pervaporative Irrigation System

    Get PDF
    • …
    corecore