45 research outputs found

    Simultaneous Mutations in Multi-Viral Proteins Are Required for Soybean mosaic virus to Gain Virulence on Soybean Genotypes Carrying Different R Genes

    Get PDF
    BACKGROUND: Genetic resistance is the most effective and sustainable approach to the control of plant pathogens that are a major constraint to agriculture worldwide. In soybean, three dominant R genes, i.e., Rsv1, Rsv3 and Rsv4, have been identified and deployed against Soybean mosaic virus (SMV) with strain-specificities. Molecular identification of virulent determinants of SMV on these resistance genes will provide essential information for the proper utilization of these resistance genes to protect soybean against SMV, and advance knowledge of virus-host interactions in general. METHODOLOGY/PRINCIPAL FINDINGS: To study the gain and loss of SMV virulence on all the three resistance loci, SMV strains G7 and two G2 isolates L and LRB were used as parental viruses. SMV chimeras and mutants were created by partial genome swapping and point mutagenesis and then assessed for virulence on soybean cultivars PI96983 (Rsv1), L-29 (Rsv3), V94-5152 (Rsv4) and Williams 82 (rsv). It was found that P3 played an essential role in virulence determination on all three resistance loci and CI was required for virulence on Rsv1- and Rsv3-genotype soybeans. In addition, essential mutations in HC-Pro were also required for the gain of virulence on Rsv1-genotype soybean. To our best knowledge, this is the first report that CI and P3 are involved in virulence on Rsv1- and Rsv3-mediated resistance, respectively. CONCLUSIONS/SIGNIFICANCE: Multiple viral proteins, i.e., HC-Pro, P3 and CI, are involved in virulence on the three resistance loci and simultaneous mutations at essential positions of different viral proteins are required for an avirulent SMV strain to gain virulence on all three resistance loci. The likelihood of such mutations occurring naturally and concurrently on multiple viral proteins is low. Thus, incorporation of all three resistance genes in a soybean cultivar through gene pyramiding may provide durable resistance to SMV

    Formation of Complexes at Plasmodesmata for Potyvirus Intercellular Movement Is Mediated by the Viral Protein P3N-PIPO

    Get PDF
    Intercellular transport of viruses through cytoplasmic connections, termed plasmodesmata (PD), is essential for systemic infection in plants by viruses. Previous genetic and ultrastructural data revealed that the potyvirus cyclindrical inclusion (CI) protein is directly involved in cell-to-cell movement, likely through the formation of conical structures anchored to and extended through PD. In this study, we demonstrate that plasmodesmatal localization of CI in N. benthamiana leaf cells is modulated by the recently discovered potyviral protein, P3N-PIPO, in a CI:P3N-PIPO ratio-dependent manner. We show that P3N-PIPO is a PD-located protein that physically interacts with CI in planta. The early secretory pathway, rather than the actomyosin motility system, is required for the delivery of P3N-PIPO and CI to PD. Moreover, CI mutations that disrupt virus cell-to-cell movement compromise PD-localization capacity. These data suggest that the CI and P3N-PIPO complex coordinates the formation of PD-associated structures that facilitate the intercellular movement of potyviruses in infected plants

    Loss of RNA–Dependent RNA Polymerase 2 (RDR2) Function Causes Widespread and Unexpected Changes in the Expression of Transposons, Genes, and 24-nt Small RNAs

    Get PDF
    Transposable elements (TEs) comprise a substantial portion of many eukaryotic genomes and are typically transcriptionally silenced. RNA–dependent RNA polymerase 2 (RDR2) is a component of the RNA–directed DNA methylation (RdDM) silencing pathway. In maize, loss of mediator of paramutation1 (mop1) encoded RDR2 function results in reactivation of transcriptionally silenced Mu transposons and a substantial reduction in the accumulation of 24 nt short-interfering RNAs (siRNAs) that recruit RNA silencing components. An RNA–seq experiment conducted on shoot apical meristems (SAMs) revealed that, as expected based on a model in which RDR2 generates 24 nt siRNAs that suppress expression, most differentially expressed DNA TEs (78%) were up-regulated in the mop1 mutant. In contrast, most differentially expressed retrotransposons (68%) were down-regulated. This striking difference suggests that distinct silencing mechanisms are applied to different silencing templates. In addition, >6,000 genes (24% of analyzed genes), including nearly 80% (286/361) of genes in chromatin modification pathways, were differentially expressed. Overall, two-thirds of differentially regulated genes were down-regulated in the mop1 mutant. This finding suggests that RDR2 plays a significant role in regulating the expression of not only transposons, but also of genes. A re-analysis of existing small RNA data identified both RDR2–sensitive and RDR2–resistant species of 24 nt siRNAs that we hypothesize may at least partially explain the complex changes in the expression of genes and transposons observed in the mop1 mutant

    A Schistosome cAMP-Dependent Protein Kinase Catalytic Subunit Is Essential for Parasite Viability

    Get PDF
    Eukaryotes, protozoan, and helminth parasites make extensive use of protein kinases to control cellular functions, suggesting that protein kinases may represent novel targets for the development of anti-parasitic drugs. Because of their central role in intracellular signaling pathways, cyclic nucleotide–dependent kinases such as cAMP-dependent protein kinase (PKA) represent promising new targets for the treatment of parasitic infections and neoplastic disorders. However, the role of these kinases in schistosome biology has not been characterized and the genes encoding schistosome PKAs have not been identified. Here we provide biochemical evidence for the presence of a PKA signaling pathway in adult Schistosoma mansoni and show that PKA activity is required for parasite viability in vitro. We also provide the first full description of a gene that encodes a PKA catalytic subunit in S. mansoni, named SmPKA-C. Finally we demonstrate, through RNA interference, that SmPKA-C contributes to the PKA activity we detected biochemically and that inhibition of SmPKA-C expression in adult schistosomes results in parasite death. Together our data show that SmPKA-C is a critically important gene product and may represent an attractive therapeutic target for the treatment and control of schistosomiasis

    Arabidopsis HDA6 Regulates Locus-Directed Heterochromatin Silencing in Cooperation with MET1

    Get PDF
    Heterochromatin silencing is pivotal for genome stability in eukaryotes. In Arabidopsis, a plant-specific mechanism called RNA–directed DNA methylation (RdDM) is involved in heterochromatin silencing. Histone deacetylase HDA6 has been identified as a component of such machineries; however, its endogenous targets and the silencing mechanisms have not been analyzed globally. In this study, we investigated the silencing mechanism mediated by HDA6. Genome-wide transcript profiling revealed that the loci silenced by HDA6 carried sequences corresponding to the RDR2-dependent 24-nt siRNAs, however their transcript levels were mostly unaffected in the rdr2 mutant. Strikingly, we observed significant overlap of genes silenced by HDA6 to those by the CG DNA methyltransferase MET1. Furthermore, regardless of dependence on RdDM pathway, HDA6 deficiency resulted in loss of heterochromatic epigenetic marks and aberrant enrichment for euchromatic marks at HDA6 direct targets, along with ectopic expression of these loci. Acetylation levels increased significantly in the hda6 mutant at all of the lysine residues in the H3 and H4 N-tails, except H4K16. Interestingly, we observed two different CG methylation statuses in the hda6 mutant. CG methylation was sustained in the hda6 mutant at some HDA6 target loci that were surrounded by flanking DNA–methylated regions. In contrast, complete loss of CG methylation occurred in the hda6 mutant at the HDA6 target loci that were isolated from flanking DNA methylation. Regardless of CG methylation status, CHG and CHH methylation were lost and transcriptional derepression occurred in the hda6 mutant. Furthermore, we show that HDA6 binds only to its target loci, not the flanking methylated DNA, indicating the profound target specificity of HDA6. We propose that HDA6 regulates locus-directed heterochromatin silencing in cooperation with MET1, possibly recruiting MET1 to specific loci, thus forming the foundation of silent chromatin structure for subsequent non-CG methylation

    Transcriptional Changes in Schistosoma mansoni during Early Schistosomula Development and in the Presence of Erythrocytes

    Get PDF
    Schistosome blood flukes cause more mortality and morbidity than any other human worm infection, but current control methods primarily rely on a single drug. There is a desperate need for new approaches to control this parasite, including vaccines. People become infected when the free-swimming larva, the cercaria, enters through the skin and becomes the schistosomulum. Schistosomula are susceptible to immune responses during their first few days in the host before they become adult parasites. We characterised the genes that these newly transformed parasites switch on when they enter the host to identify molecules that are critical for survival in the human host. Some of these highly up-regulated genes can be targeted for future development of new vaccines and drugs

    Metabolic and miRNA Profiling of TMV Infected Plants Reveals Biphasic Temporal Changes

    Get PDF
    Plant viral infections induce changes including gene expression and metabolic components. Identification of metabolites and microRNAs (miRNAs) differing in abundance along infection may provide a broad view of the pathways involved in signaling and defense that orchestrate and execute the response in plant-pathogen interactions. We used a systemic approach by applying both liquid and gas chromatography coupled to mass spectrometry to determine the relative level of metabolites across the viral infection, together with a miRs profiling using a micro-array based procedure. Systemic changes in metabolites were characterized by a biphasic response after infection. The first phase, detected at one dpi, evidenced the action of a systemic signal since no virus was detected systemically. Several of the metabolites increased at this stage were hormone-related. miRs profiling after infection also revealed a biphasic alteration, showing miRs alteration at 5 dpi where no virus was detected systemically and a late phase correlating with virus accumulation. Correlation analyses revealed a massive increase in the density of correlation networks after infection indicating a complex reprogramming of the regulatory pathways, either in response to the plant defense mechanism or to the virus infection itself. Our data propose the involvement of a systemic signaling on early miRs alteration

    Anxiety and Depression in Adults with Autism Spectrum Disorder: A Systematic Review and Meta-analysis

    Get PDF
    Adults with autism spectrum disorder (ASD) are thought to be at disproportionate risk of developing mental health comorbidities, with anxiety and depression being considered most prominent amongst these. Yet, no systematic review has been carried out to date to examine rates of both anxiety and depression focusing specifically on adults with ASD. This systematic review and meta-analysis examined the rates of anxiety and depression in adults with ASD and the impact of factors such as assessment methods and presence of comorbid intellectual disability (ID) diagnosis on estimated prevalence rates. Electronic database searches for studies published between January 2000 and September 2017 identified a total of 35 studies, including 30 studies measuring anxiety (n = 26 070; mean age = 30.9, s.d. = 6.2 years) and 29 studies measuring depression (n = 26 117; mean age = 31.1, s.d. = 6.8 years). The pooled estimation of current and lifetime prevalence for adults with ASD were 27% and 42% for any anxiety disorder, and 23% and 37% for depressive disorder. Further analyses revealed that the use of questionnaire measures and the presence of ID may significantly influence estimates of prevalence. The current literature suffers from a high degree of heterogeneity in study method and an overreliance on clinical samples. These results highlight the importance of community-based studies and the identification and inclusion of well-characterized samples to reduce heterogeneity and bias in estimates of prevalence for comorbidity in adults with ASD and other populations with complex psychiatric presentations

    Regulation of microRNA biogenesis and turnover by animals and their viruses

    Get PDF
    Item does not contain fulltextMicroRNAs (miRNAs) are a ubiquitous component of gene regulatory networks that modulate the precise amounts of proteins expressed in a cell. Despite their small size, miRNA genes contain various recognition elements that enable specificity in when, where and to what extent they are expressed. The importance of precise control of miRNA expression is underscored by functional studies in model organisms and by the association between miRNA mis-expression and disease. In the last decade, identification of the pathways by which miRNAs are produced, matured and turned-over has revealed many aspects of their biogenesis that are subject to regulation. Studies in viral systems have revealed a range of mechanisms by which viruses target these pathways through viral proteins or non-coding RNAs in order to regulate cellular gene expression. In parallel, a field of study has evolved around the activation and suppression of antiviral RNA interference (RNAi) by viruses. Virus encoded suppressors of RNAi can impact miRNA biogenesis in cases where miRNA and small interfering RNA pathways converge. Here we review the literature on the mechanisms by which miRNA biogenesis and turnover are regulated in animals and the diverse strategies that viruses use to subvert or inhibit these processes
    corecore