110 research outputs found

    Characterisation and tracking of membrane surfaces at NASA Langley Research Centre

    Get PDF
    Aerospace engineers require measurements of the shape of aerodynamic surfaces and the six degree of freedom (6DoF) position and orientation of aerospace models to analyse structural dynamics and aerodynamic forces. The measurement technique must be noncontact, accurate, reliable, have a high sample rate and preferably be non-intrusive. Close range photogrammetry based on multiple, synchronised, commercial-off-the-shelf digital cameras can supply surface shape and 6DoF data at 5-15Hz with customisable accuracies. This paper describes data acquisition systems designed and implemented at NASA Langley Research Center to capture surface shapes and 6DoF data. System calibration and data processing techniques are discussed. Examples of experiments and data outputs are described

    Monthly quasi-periodic eruptions from repeated stellar disruption by a massive black hole

    Get PDF
    In recent years, searches of archival X-ray data have revealed galaxies exhibiting nuclear quasi-periodic eruptions with periods of several hours. These are reminiscent of the tidal disruption of a star by a supermassive black hole. The repeated, partial stripping of a white dwarf in an eccentric orbit around an ~105 M⊙ black hole provides an attractive model. A separate class of periodic nuclear transients, with much longer timescales, have recently been discovered optically and may arise from the partial stripping of a main-sequence star by an ~107 M⊙ black hole. No clear connection between these classes has been made. We present the discovery of an X-ray nuclear transient that shows quasi-periodic outbursts with a period of weeks. We discuss possible origins for the emission and propose that this system bridges the two existing classes outlined above. This discovery was made possible by the rapid identification, dissemination and follow-up of an X-ray transient found by the new live Swift-XRT transient detector, demonstrating the importance of low-latency, sensitive searches for X-ray transients

    NGTS-5b: A highly inflated planet offering insights into the sub-Jovian desert

    Get PDF
    Context: Planetary population analysis gives us insight into formation and evolution processes. For short-period planets, the subJovian desert has been discussed in recent years with regard to the planet population in the mass/period and radius/period parameter space without taking stellar parameters into account. The Next Generation Transit Survey (NGTS) is optimised for detecting planets in this regime, which allows for further analysis of the sub-Jovian desert. Aims: With high-precision photometric surveys (e.g. with NGTS and TESS), which aim to detect short period planets especially around M/K-type host stars, stellar parameters need to be accounted for when empirical data are compared to model predictions. Presenting a newly discovered planet at the boundary of the sub-Jovian desert, we analyse its bulk properties and use it to show the properties of exoplanets that border the sub-Jovian desert. Methods: Using NGTS light curve and spectroscopic follow-up observations, we confirm the planetary nature of planet NGTS-5b and determine its mass. Using exoplanet archives, we set the planet in context with other discoveries. Results: NGTS-5b is a short-period planet with an orbital period of 3.3569866 +- 0.0000026 days. With a mass of 0.229 +- 0.037 MJup and a radius of 1.136 +- 0.023 RJup, it is highly inflated. Its mass places it at the upper boundary of the sub-Jovian desert. Because the host is a K2 dwarf, we need to account for the stellar parameters when NGTS-5b is analysed with regard to planet populations. Conclusions: With red-sensitive surveys (e.g. with NGTS and TESS), we expect many more planets around late-type stars to be detected. An empirical analysis of the sub-Jovian desert should therefore take stellar parameters into account

    NGTS-13b: A hot 4.8 Jupiter-mass planet transiting a subgiant star

    Get PDF
    We report the discovery of the massive hot Jupiter NGTS-13b by the Next Generation Transit Survey (NGTS). The V = 12.7 host star is likely in the subgiant evolutionary phase with log g_{*} = 4.04 ±\pm 0.05, Teff_{eff} = 5819 ±\pm 73 K, M_{*} = 1.300.18+0.11^{+0.11}_{-0.18} M_{\odot}, and R_{*} = 1.79 ±\pm 0.06 R_{\odot}. NGTS detected a transiting planet with a period of P = 4.12 days around the star, which was later validated with the Transiting Exoplanet Survey Satellite (TESS; TIC 454069765). We confirm the planet using radial velocities from the CORALIE spectrograph. Using NGTS and TESS full-frame image photometry combined with CORALIE radial velocities we determine NGTS-13b to have a radius of RP_{P} = 1.142 ±\pm 0.046 RJup_{Jup}, mass of MP_{P} = 4.84 ±\pm 0.44 MJup_{Jup} and eccentricity e = 0.086 ±\pm 0.034. Some previous studies suggest that \sim4 MJup_{Jup} may be a border between two separate formation scenarios (e.g., core accretion and disk instability) and that massive giant planets share similar formation mechanisms as lower-mass brown dwarfs. NGTS-13b is just above 4 MJup_{Jup} making it an important addition to the statistical sample needed to understand the differences between various classes of substellar companions. The high metallicity, [Fe/H] = 0.25 ±\pm 0.17, of NGTS-13 does not support previous suggestions that massive giants are found preferentially around lower metallicity host stars, but NGTS-13b does support findings that more massive and evolved hosts may have a higher occurrence of close-in massive planets than lower-mass unevolved stars

    NGTS discovery of a highly inflated Saturn-mass planet and a highly irradiated hot Jupiter: NGTS-26 b and NGTS-27 b

    Get PDF
    We report the discovery of two new transiting giant exoplanets NGTS-26 b and NGTS-27 b by the Next Generation Transit Survey (NGTS). NGTS-26 b orbits around a G6-type main sequence star every 4.52 days. It has a mass of 0.29-0.06+0.07 MJup and a radius of 1.33-0.05+0.06 RJup making it a Saturn-mass planet with a highly inflated radius. NGTS-27 b orbits around a slightly evolved G3-type star every 3.37 days. It has a mass of 0.59-0.07+0.10 MJup and a radius of 1.40±0.04 RJup, making it a relatively standard hot Jupiter. The transits of these two planetary systems were re-observed and confirmed in photometry by the SAAO 1.0-m telescope, 1.2-m Euler Swiss telescope as well as the TESS spacecraft, and their masses were derived spectroscopically by the CORALIE, FEROS and HARPS spectrographs. Both giant exoplanets are highly irradiated by their host stars and present an anomalously inflated radius, especially NGTS-26 b which is one of the largest objects among peers of similar mass

    Discovery of the Onset of Rapid Accretion by a Dormant Massive Black Hole

    Full text link
    Massive black holes are believed to reside at the centres of most galaxies. They can be- come detectable by accretion of matter, either continuously from a large gas reservoir or impulsively from the tidal disruption of a passing star, and conversion of the gravitational energy of the infalling matter to light. Continuous accretion drives Active Galactic Nuclei (AGN), which are known to be variable but have never been observed to turn on or off. Tidal disruption of stars by dormant massive black holes has been inferred indirectly but the on- set of a tidal disruption event has never been observed. Here we report the first discovery of the onset of a relativistic accretion-powered jet in the new extragalactic transient, Swift J164449.3+573451. The behaviour of this new source differs from both theoretical models of tidal disruption events and observations of the jet-dominated AGN known as blazars. These differences may stem from transient effects associated with the onset of a powerful jet. Such an event in the massive black hole at the centre of our Milky Way galaxy could strongly ionize the upper atmosphere of the Earth, if beamed towards us.Comment: Submitted to Nature. 4 pages, 3 figures (main paper). 26 pages, 13 figures (supplementary information

    The Next Generation Transit Survey (NGTS)

    Get PDF
    © 2017 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society. We describe the Next Generation Transit Survey (NGTS), which is a ground-based project searching for transiting exoplanets orbiting bright stars. NGTS builds on the legacy of previous surveys, most notably WASP, and is designed to achieve higher photometric precision and hence find smaller planets than have previously been detected from the ground. It also operates in red light,maximizing sensitivity to late K and earlyMdwarf stars. The survey specifications call for photometric precision of 0.1 per cent in red light over an instantaneous field of view of 100 deg 2 , enabling the detection of Neptune-sized exoplanets around Sun-like stars and super-Earths around M dwarfs. The survey is carried out with a purpose-built facility at Cerro Paranal, Chile, which is the premier site of the European Southern Observatory (ESO). An array of twelve 20 cm f/2.8 telescopes fitted with back-illuminated deep-depletion CCD cameras is used to survey fields intensively at intermediateGalactic latitudes. The instrument is also ideally suited to ground-based photometric follow-up of exoplanet candidates from space telescopes such as TESS, Gaia and PLATO. We present observations that combine precise autoguiding and the superb observing conditions at Paranal to provide routine photometric precision of 0.1 per cent in 1 h for stars with I-band magnitudes brighter than 13. We describe the instrument and data analysis methods as well as the status of the survey, which achieved first light in 2015 and began full-survey operations in 2016. NGTS data will be made publicly available through the ESO archive

    Intensive disc-reverberation mapping of Fairall 9: 1st year of Swift & LCO monitoring

    Get PDF
    We present results of time-series analysis of the first year of the Fairall 9 intensive disc-reverberation campaign. We used Swift and the Las Cumbres Observatory global telescope network to continuously monitor Fairall 9 from X-rays to near-infrared at a daily to sub-daily cadence. The cross-correlation function between bands provides evidence for a lag spectrum consistent with the τλ4/3\tau\propto\lambda^{4/3} scaling expected for an optically thick, geometrically thin blackbody accretion disc. Decomposing the flux into constant and variable components, the variable component's spectral energy distribution is slightly steeper than the standard accretion disc prediction. We find evidence at the Balmer edge in both the lag and flux spectra for an additional bound-free continuum contribution that may arise from reprocessing in the broad-line region. The inferred driving light curve suggests two distinct components, a rapidly variable (100100 days) component with an opposite lag to the reverberation signal

    Monthly quasi-periodic eruptions from repeated stellar disruption by a massive black hole

    Get PDF
    In recent years, searches of archival X-ray data have revealed galaxies exhibiting nuclear quasi-periodic eruptions with periods of several hours. These are reminiscent of the tidal disruption of a star by a supermassive black hole, and the repeated, partial stripping of a white dwarf in an eccentric orbit around a∼105M⊙ black hole provides an attractive model. A separate class of periodic nuclear transients, with significantly longer timescales, have recently been discovered optically, and may arise from the partial stripping of a main-sequence star by a∼107M⊙black hole. No clear connection between these classes has been made. We present the discovery of an X-ray nuclear transient which shows quasi periodic outbursts with a period of weeks. We discuss possible origin for the emission, and propose that this system bridges the two existing classes outlined above. This discovery was made possible by the rapid identification, dissemination and follow up of an Xray transient found by the new live Swift-XRT transient detector, demonstrating the importance of low-latency, sensitive searches for X-ray transients
    corecore