51 research outputs found

    An exploration of the relationships among facial dimensions, age, sex, dominance status and personality in rhesus macaques (Macaca mulatta)

    Get PDF
    Aspects of personality in nonhuman primates have been linked to health, social relationships, and life history outcomes. In humans as well as nonhuman primates, facial morphology is associated with assertiveness, aggression, and measures of dominance status. In this study we aimed to examine the relationship among facial morphology, age, sex, dominance status, and ratings on the personality dimensions Confidence, Openness, Assertiveness, Friendliness, Activity, and Anxiety in rhesus macaques (Macaca mulatta). We measured facial width-to-height ratio (fWHR) and lower-height/full-height ratio (fLHFH) using photographs from 109 captive rhesus macaques, which observers also assessed for dominance status and personality, and explored the associations among facial morphology, age, sex, dominance status, and personality. fWHR and fLHFH personality associations depended on age category: Assertiveness was associated with higher fWHR and fLHFH, and Confidence was associated with lower fWHR and fLHFH, but all these associations were consistent only in individuals <8 yr. of age. We found fWHR and fLHFH to not be consistently associated with sex or dominance status; compared to younger individuals, we found few associations with fWHR and fLHFH for individuals older than 8 yr., which may be due to limited sample size. Our results indicate that in macaques <8 yr. old, facial morphology is associated with the Assertiveness and Confidence personality dimensions, which is consistent with results suggesting a relationship between fWHR and trait aggression in humans and assertiveness in brown capuchins, all of which implies that fWHR might be a cue to assertive and aggressive traits

    Effects of Time of Day and Sleep Deprivation on Motorcycle-Driving Performance

    Get PDF
    The aim of this study was to investigate whether motorcycle handling capabilities – measured by means of the efficiency of emergency manoeuvres – were dependent on prior sleep deprivation and time of day. Twelve male participants voluntarily took part in four test sessions, starting at 6 a.m., 10 a.m., 2 p.m., and 6 p.m., following a night either with or without sleep. Each test session comprised temperature and sleepiness measurements, before three different types of motorcycling tests were initiated: (1) stability in straight ahead riding at low speed (in “slow motion” mode and in “brakes and clutch” mode), (2) emergency braking and (3) crash avoidance tasks performed at 20 kph and 40 kph. The results indicate that motorcycle control at low speed depends on time of day, with an improvement in performance throughout the day. Emergency braking performance is affected at both speeds by time of day, with poorer performance (longer total stopping distance, reaction time and braking distance) in the morning, and also by sleep deprivation, from measurements obtained at 40 kph (incorrect initial speed). Except for a tendency observed after the sleepless night to deviate from the initial speed, it seems that crash avoidance capabilities are quite unaffected by the two disturbance factors. Consequently, some motorcycle handling capabilities (stability at low speed and emergency braking) change in the same way as the diurnal fluctuation observed in body temperature and sleepiness, whereas for others (crash avoidance) the participants were able to maintain their initial performance level despite the high levels of sleepiness recorded after a sleepless night. Motorcycle riders have to be aware that their handling capabilities are limited in the early morning and/or after sleep deprivation. Both these situations can increase the risk of falls and of being involved in a road accident

    The effect of normal load force and roughness on the dynamic traction developed at the shoe-surface interface in tennis

    Get PDF
    During tennis-specific movements, such as accelerating and side stepping, the dynamic traction provided by the shoe-surface combination plays an important role in the injury risk and performance of the player. Acrylic hard court tennis surfaces have been reported to have increased injury occurrence, partly caused by increased traction that developed at the shoe-surface interface. Often mechanical test methods used for the testing and categorisation of playing surfaces do not tend to simulate loads occurring during participation on the surface, and thus are unlikely to predict the human response to the surface. A traction testing device, discussed in this paper, has been used to mechanically measure the dynamic traction force between the shoe and the surface under a range of normal loading conditions that are relevant to real-life play. Acrylic hard court tennis surfaces generally have a rough surface topography, due to their sand and acrylic paint mixed top coating. Surface micro-roughness will influence the friction mechanisms present during viscoelastic contacts, as found in footwear-surface interactions. This paper aims to further understand the influence micro-roughness and normal force has on the dynamic traction that develops at the shoe-surface interface on acrylic hard court tennis surfaces. The micro-roughness and traction of a controlled set of acrylic hard court tennis surfaces have been measured. The relationships between micro-roughness, normal force, and traction force are discussed. © 2013 The Author(s)

    Mapping and Imaging the Aggressive Brain in Animals and Humans

    Get PDF

    Genetic basis for chILD

    Get PDF
    Background: Genetic variants responsible for childhood interstitial lung disease (chILD) have not been studied extensively in Japanese patients. Methods: The study population consisted of 62 Japanese chILD patients. Twenty-one and four patients had pulmonary hypertension resistant to treatment (PH) and hypothyroidism, respectively. Analyses of genetic variants were performed in all 62 patients for SFTPC and ABCA3, in all 21 PH patients for FOXF1, and in a limited number of patients for NKX2.1. Results: Causative genetic variants for chILD were identified in 11 (18%) patients: SFTPC variants in six, NKX2.1 variants in three, and FOXF1 variants in two patients. No patients had ABCA3 variants. All three and two patients with NKX2.1 variants had hypothyroidism and developmental delay, respectively. We found six novel variants in this study. Conclusion: Mutations in SFTPC, NKX2.1, and FOXF1 were identified among Japanese infants and children with chILD, whereas ABCA3 mutations were rare
    corecore