44 research outputs found

    Photoionizing feedback in spiral arm molecular clouds

    Get PDF
    This is the author accepted manuscript. The final version is available from Oxford University Press via the DOI in this recordWe present simulations of a 500 pc2 region, containing gas of mass 4 × 106 M⊙, extracted from an entire spiral galaxy simulation, scaled up in resolution, including photoionising feedback from stars of mass > 18 M⊙. Our region is evolved for 10 Myr and shows clustered star formation along the arm generating ≈ 5000 cluster sink particles ≈ 5% of which contain at least one of the ≈ 4000 stars of mass > 18 M⊙. Photoionisation has a noticeable effect on the gas in the region, producing ionised cavities and leading to dense features at the edge of the HII regions. Compared to the no-feedback case, Photoionisation produces a larger total mass of clouds and clumps, with around twice as many such objects, which are individually smaller and more broken up. After this we see a rapid decrease in the total mass in clouds and the number of clouds. Unlike studies of isolated clouds, our simulations follow the long range effects of ionisation, with some already-dense gas, becoming compressed from multiple sides by neighbouring HII regions. This causes star formation that is both accelerated and partially displaced throughout the spiral arm with up to 30% of our cluster sink particle mass forming at distances > 5 pc from sites of sink formation in the absence of feedback. At later times, the star formation rate decreases to below that of the no-feedback case.European Union Horizon 2020European Union FP

    Supernovae and photoionizing feedback in spiral arm molecular clouds

    Get PDF
    This is the author accepted manuscript. The final version is available from Oxford University Press via the DOI in this recordData availability: The data underlying this article will be shared on reasonable request to the corresponding authorWe explore the interplay between supernovae and the ionizing radiation of their progenitors in star forming regions. The relative contributions of these stellar feedback processes are not well understood, particularly on scales greater than a single star forming cloud. We focus predominantly on how they affect the interstellar medium. We re-simulate a 500 pc2 region from previous work that included photoionization and add supernovae. Over the course of 10 Myr more than 500 supernovae occur in the region. The supernovae remnants cool very quickly in the absence of earlier photoionization, but form much larger and more spherical hot bubbles when photoionization is present. Overall, the photoionization has a significantly greater effect on gas morphology and the sites of star formation. However, the two processes are comparable when looking at their effect on velocity dispersion. When combined, the two feedback processes increase the velocity dispersions by more than the sum of their parts, particularly on scales above 5 pc.European Union Horizon 202

    Proteomic Analysis of Fusarium solani Isolated from the Asian Longhorned Beetle, Anoplophora glabripennis

    Get PDF
    Wood is a highly intractable food source, yet many insects successfully colonize and thrive in this challenging niche. Overcoming the lignin barrier of wood is a key challenge in nutrient acquisition, but full depolymerization of intact lignin polymers has only been conclusively demonstrated in fungi and is not known to occur by enzymes produced by insects or bacteria. Previous research validated that lignocellulose and hemicellulose degradation occur within the gut of the wood boring insect, Anoplophora glabripennis (Asian longhorned beetle), and that a fungal species, Fusarium solani (ATCC MYA 4552), is consistently associated with the larval stage. While the nature of this relationship is unresolved, we sought to assess this fungal isolate's ability to degrade lignocellulose and cell wall polysaccharides and to extract nutrients from woody tissue. This gut-derived fungal isolate was inoculated onto a wood-based substrate and shotgun proteomics using Multidimensional Protein Identification Technology (MudPIT) was employed to identify 400 expressed proteins. Through this approach, we detected proteins responsible for plant cell wall polysaccharide degradation, including proteins belonging to 28 glycosyl hydrolase families and several cutinases, esterases, lipases, pectate lyases, and polysaccharide deacetylases. Proteinases with broad substrate specificities and ureases were observed, indicating that this isolate has the capability to digest plant cell wall proteins and recycle nitrogenous waste under periods of nutrient limitation. Additionally, several laccases, peroxidases, and enzymes involved in extracellular hydrogen peroxide production previously implicated in lignin depolymerization were detected. In vitro biochemical assays were conducted to corroborate MudPIT results and confirmed that cellulases, glycosyl hydrolases, xylanases, laccases, and Mn- independent peroxidases were active in culture; however, lignin- and Mn- dependent peroxidase activities were not detected While little is known about the role of filamentous fungi and their associations with insects, these findings suggest that this isolate has the endogenous potential to degrade lignocellulose and extract nutrients from woody tissue

    Remotely induced magnetism in a normal metal using a superconducting spin-valve

    Get PDF
    Superconducting spintronics has emerged in the past decade as a promising new field that seeks to open a new dimension for nanoelectronics by utilizing the internal spin structure of the superconducting Cooper pair as a new degree of freedom1, 2. Its basic building blocks are spin-triplet Cooper pairs with equally aligned spins, which are promoted by proximity of a conventional superconductor to a ferromagnetic material with inhomogeneous macroscopic magnetization3. Using low-energy muon spin-rotation experiments we find an unanticipated effect, in contradiction with the existing theoretical models of superconductivity and ferromagnetism: the appearance of a magnetization in a thin layer of a non-magnetic metal (gold), separated from a ferromagnetic double layer by a 50-nm-thick superconducting layer of Nb. The effect can be controlled either by temperature or by using a magnetic field to control the state of the remote ferromagnetic elements, and may act as a basic building block for a new generation of quantum interference devices based on the spin of a Cooper pair

    The production and turnover of extramatrical mycelium of ectomycorrhizal fungi in forest soils: role in carbon cycling

    Full text link

    The formation of massive stellar clusters in converging galactic flows with photoionisation

    No full text
    This is the final version. Available from Oxford University Press via the DOI in this recordData availability: The data underlying this paper will be shared on reasonable request to the corresponding author.We have performed simulations of cluster formation along two regions of a spiral arm taken from a global Milky Way simulation, including photoionising feedback. One region is characterised by strongly converging flows, the other represents a more typical spiral arm region. We find that more massive clusters are able to form on shorter timescales for the region with strongly converging flows. Mergers between clusters are frequent in the case of the strongly converging flows and enable the formation of massive clusters. We compare equivalent clusters formed in simulations with and without ionisation. Photoionisation does not prevent massive cluster formation, but can be seen to limit the masses of the clusters. On average the mass is reduced by around 20%, but we see a large spread from ionisation having minimal difference to leading to a 50% reduction in mass. Photoionisation is also able to clear out the gas in the vicinity of the clusters on Myr timescales, which can produce clusters with larger radii that are surrounded by more massive stellar halos. We find that the ionising feedback has more impact in our second region which is less dense and has less strongly converging flows.European Union Horizon 2020Japanese Society for the Promotion of Science (JSPS
    corecore