1,916 research outputs found
ChIP-Array: Combinatory analysis of ChIP-seq/chip and microarray gene expression data to discover direct/indirect targets of a transcription factor
Chromatin immunoprecipitation (ChIP) coupled with high-throughput techniques (ChIP-X), such as next generation sequencing (ChIP-Seq) and microarray (ChIP-chip), has been successfully used to map active transcription factor binding sites (TFBS) of a transcription factor (TF). The targeted genes can be activated or suppressed by the TF, or are unresponsive to the TF. Microarray technology has been used to measure the actual expression changes of thousands of genes under the perturbation of a TF, but is unable to determine if the affected genes are direct or indirect targets of the TF. Furthermore, both ChIP-X and microarray methods produce a large number of false positives. Combining microarray expression profiling and ChIP-X data allows more effective TFBS analysis for studying the function of a TF. However, current web servers only provide tools to analyze either ChIP-X or expression data, but not both. Here, we present ChIP-Array, a web server that integrates ChIP-X and expression data from human, mouse, yeast, fruit fly and Arabidopsis. This server will assist biologists to detect direct and indirect target genes regulated by a TF of interest and to aid in the functional characterization of the TF. ChIP-Array is available at http://jjwanglab.hku.hk/ChIP-Array, with free access to academic users. © 2011 The Author(s).published_or_final_versio
Exploring the genome-wide roles of transcription factors and their complexes in chromosome interaction
Session - Bioinformatics and Genomic TechnologyThe tight regulation of genes in different cells is governed by temporal and spatial biological signals. It is very important to pinpoint the pattern of transcription factors (TFs) and their complexes in looping interactions and to detect TF complexes as well as the underlying cis-regulatory modules (CRMs) in different human cell types. Existing studies on analysis of TFs and their complexes were only performed at one dimension and not at genome-wide scale. Recently, the unbiased chromosome conformation capture, Hi-C, can detect the genome-wide chromatin interactions, but has restrictions on its resolution due to the variable cell-to-cell chromosome structures and inadequate sequencing depth. In this study, we provide a comprehensive analysis on TFs regulatory pattern within chromosome looping by combining Hi-C and ENCODE ChIP-Seq data from three human cell types (GM12878, H1-hESC and K562). We first devised a strategy to map ChIP-Seq peaks of each TF to a normalized 10kb Hi-C contact matrix and construct an interaction matrix for each participant TF. We observed tight correlation for TFs participant activities in high resolution chromosome looping between biological replicates, which indicate the TF activities is more stable than local DNA interactions. To check the enrichment of different chromatin marks and genomic features in the interaction region of each participant TF, we performed enrichment test on ...published_or_final_versio
ChIP-Array 2: integrating multiple omics data to construct gene regulatory networks
published_or_final_versio
ProteoMirExpress: inferring microRNA-centered regulatory networks from high-throughput proteomic and transcriptome data
MicroRNAs (miRNAs) regulate gene expression through translational repression and RNA degradation. Recently developed high-throughput proteomic methods measure gene expression changes at protein levels, and therefore can reveal the direct effects of miRNAs’ translational repression. Here, we present a web server, ProteoMirExpress that integrates proteomic and mRNA expression data together to infer miRNA-centered regulatory networks. With both high throughput data from the users, ProteoMirExpress is able to discover not only miRNA targets that have mRNA decreased, but also subgroups of targets whose proteins are suppressed but mRNAs are not significantly changed or whose mRNAs are decreased but proteins are not significantly changed, which were usually ignored by most current methods. Furthermore, both direct and indirect targets of miRNAs can be detected. Therefore ProteoMirExpress provides more comprehensive miRNA-centered regulatory networks. We use several published data to assess the quality of our inferred networks and prove the value of our server. ProteoMirExpress is available at http://jjwanglab.org/ProteoMirExpress, with free access to academic users.postprin
Application of Deep Learning Long Short-Term Memory in Energy Demand Forecasting
The smart metering infrastructure has changed how electricity is measured in
both residential and industrial application. The large amount of data collected
by smart meter per day provides a huge potential for analytics to support the
operation of a smart grid, an example of which is energy demand forecasting.
Short term energy forecasting can be used by utilities to assess if any
forecasted peak energy demand would have an adverse effect on the power system
transmission and distribution infrastructure. It can also help in load
scheduling and demand side management. Many techniques have been proposed to
forecast time series including Support Vector Machine, Artificial Neural
Network and Deep Learning. In this work we use Long Short Term Memory
architecture to forecast 3-day ahead energy demand across each month in the
year. The results show that 3-day ahead demand can be accurately forecasted
with a Mean Absolute Percentage Error of 3.15%. In addition to that, the paper
proposes way to quantify the time as a feature to be used in the training phase
which is shown to affect the network performance
MicroRNA and messenger RNA profiling reveals new biomarkers and mechanisms for RDX induced neurotoxicity
Background
RDX is a well-known pollutant to induce neurotoxicity. MicroRNAs (miRNA) and messenger RNA (mRNA) profiles are useful tools for toxicogenomics studies. It is worthy to integrate MiRNA and mRNA expression data to understand RDX-induced neurotoxicity.
Results
Rats were treated with or without RDX for 48 h. Both miRNA and mRNA profiles were conducted using brain tissues. Nine miRNAs were significantly regulated by RDX. Of these, 6 and 3 miRNAs were up- and down-regulated respectively. The putative target genes of RDX-regulated miRNAs were highly nervous system function genes and pathways enriched. Fifteen differentially genes altered by RDX from mRNA profiles were the putative targets of regulated miRNAs. The induction of miR-71, miR-27ab, miR-98, and miR-135a expression by RDX, could reduce the expression of the genes POLE4, C5ORF13, SULF1 and ROCK2, and eventually induce neurotoxicity. Over-expression of miR-27ab, or reduction of the expression of unknown miRNAs by RDX, could up-regulate HMGCR expression and contribute to neurotoxicity. RDX regulated immune and inflammation response miRNAs and genes could contribute to RDX- induced neurotoxicity and other toxicities as well as animal defending reaction response to RDX exposure.
Conclusions
Our results demonstrate that integrating miRNA and mRNA profiles is valuable to indentify novel biomarkers and molecular mechanisms for RDX-induced neurological disorder and neurotoxicity.published_or_final_versio
A review of physical supply and EROI of fossil fuels in China
This paper reviews China’s future fossil fuel supply from the perspectives of physical output and net energy output. Comprehensive analyses of physical output of fossil fuels suggest that China’s total oil production will likely reach its peak, at about 230 Mt/year (or 9.6 EJ/year), in 2018; its total gas production will peak at around 350 Bcm/year (or 13.6 EJ/year) in 2040, while coal production will peak at about 4400 Mt/year (or 91.9 EJ/year) around 2020 or so. In terms of the forecast production of these fuels, there are significant differences among current studies. These differences can be mainly explained by different ultimately recoverable resources assumptions, the nature of the models used, and differences in the historical production data. Due to the future constraints on fossil fuels production, a large gap is projected to grow between domestic supply and demand, which will need to be met by increasing imports. Net energy analyses show that both coal and oil and gas production show a steady declining trend of EROI (energy return on investment) due to the depletion of shallow-buried coal resources and conventional oil and gas resources, which is generally consistent with the approaching peaks of physical production of fossil fuels. The peaks of fossil fuels production, coupled with the decline in EROI ratios, are likely to challenge the sustainable development of Chinese society unless new abundant energy resources with high EROI values can be found
Molecular phylogenetic analysis of key Jatropha species inferred from nrDNA ITS and chloroplast (trnL-F and rbcL) sequences
The genus Jatropha (Euphorbiaceae) contains species that are of significant economic and ornamental value. However, Jatropha breeding material is rather limited due to incomplete information regarding phylogenetic relationships among germplasm resources. Phylogenetic analyses were performed based on the internal transcribed spacer of nuclear ribosomal DNA (nrDNA ITS), two chloroplast regions (trnL-F and rbcL), and the combined (ITS+trnL-F+rbcL) dataset among twenty-five specimens representing six key Jatropha species. Phylogenetic relationships of Jatropha were well resolved between subgenus Curcas and subgenus Jatropha, and demonstrated the intermediate position of section Polymorphae among sections of both subgenera. Jatropha curcas and J. integerrima demonstrated a close phylogenetic relationship. The molecular data agreed with the morphological classification that recognized J. multifida and J. podagrica in sec. Peltatae. The distinct intraspecific divergence that occurred in J. curcas could be attributed to restricted gene flow caused by geographical isolation and different ecological conditions. Phylograms produced with trnL-F and rbcL sequence data suggested slow rates of sequence divergence among Jatropha spp., while the ITS gene tree had good resolution suggesting high genetic variation of ITS among Jatropha species
Work‒family interface in the context of career success: A qualitative inquiry
Work–family researchers are increasingly recognizing the need to expand their focus to advance the field. One population largely neglected by work‒family researchers is individuals who have been extremely successful in their careers. In addition, organizational career scholars have largely neglected the interplay between employees’ work and family lives. This study contributes to the work‒family literature by studying work‒family interface (WFI) in the context of career success. We sought to explore the lived experiences of 28 distinguished professors who are among the top 2‒5% scholars in their field, to provide an in-depth understanding of their WFI and the prominent factors affecting it over their careers. Our findings have theoretical implications for both work‒family and career success literature
On solitary wave diffraction by multiple, in-line vertical cylinders
The interaction of solitary waves with multiple, in-line vertical cylinders is investigated. The fixed cylinders are of constant circular cross section and extend from the seafloor to the free surface. In general, there are N of them lined in a row parallel to the incoming wave direction. Both the nonlinear, generalized Boussinesq and the Green–Naghdi shallow-water wave equations are used. A boundary-fitted curvilinear coordinate system is employed to facilitate the use of the finite-difference method on curved boundaries. The governing equations and boundary conditions are transformed from the physical plane onto the computational plane. These equations are then solved in time on the computational plane that contains a uniform grid and by use of the successive over-relaxation method and a second-order finite-difference method to determine the horizontal force and overturning moment on the cylinders. Resulting solitary wave forces from the nonlinear Green–Naghdi and the Boussinesq equations are presented, and the forces are compared with the experimental data when available.</p
- …
