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Abbreviations

MRNA: messenger ribonucleic acid

MicroRNA/miRNA: micro ribonucleic acid

CLIP-Seq: cross linking and immunoprecipitation sequencing

Degradome-Seq: degradome sequencing

UTR: untranslated region

miRISCs: miRNA-induced silencing complexes

TF: transcription factor

SILAC: stable isotope labeling by amino acids in cell culture

PRISM: proteomic investigation strategy for mammals

IS: interaction score

2|Page



Summary

MicroRNAs (miRNAs) regulate gene expression through translational repression and RNA
degradation. Recently developed high-throughput proteomic methods measure gene
expression changes at protein levels, and therefore can reveal the direct effects of miRNAs’
translational repression. Here, we present a web server, ProteoMirExpress that integrates
proteomic and mRNA expression data together to infer miRNA-centered regulatory networks.
With both high throughput data from the users, ProteoMirExpress is able to discover not only
miRNA targets that have mRNA decreased, but also subgroups of targets whose proteins are
suppressed but mRNAs are not significantly changed or whose mRNAs are decreased but
proteins are not significantly changed, which were usually ignored by most current methods.
Furthermore, both direct and indirect targets of miRNAs can be detected. Therefore
ProteoMirExpress provides more comprehensive miRNA-centered regulatory networks. We use

several published data to assess the quality of our inferred networks and prove the value of our

server. ProteoMirExpress is available at http://jjwanglab.org/ProteoMirExpress, with free

access to academic users.
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Introduction

MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression by either
causing translation inhibition or mRNA decay (1). Posttranscriptional regulation by miRNA is an
important level of the complex gene regulatory network and it controls a wide range of
biological processes. Deregulation of miRNAs expression can lead to various diseases, including
many human cancers (2). Therefore, understanding the regulatory networks of miRNAs in
different biological processes is crucial to unraveling their functional importance and to

providing a pool of targets for medical therapies.

Several approaches have been proposed to predict miRNA’s targets and to construct
miRNA-centered regulatory networks. Computational approaches include miRNA target
prediction based on binding energy of miRNA-mRNA interactions (3, 4) and on the evolutionary
conservation of the seed regions (5-7). Experimental approaches include identification of
destabilized mRNAs in the presence of a miRNA, or high-throughput methods to detect mRNAs
bound by argonaute proteins and miRNA cleavage sites (8). Databases, such as MiRecords (9)
and TarBase (10), collect experimentally validated miRNA targets and starBase (8) collects

miRNA-mRNA interaction maps from argonaute CLIP-Seq and Degradome-Seq data.

The anti-correlation between the miRNA and their targets has been widely used to infer
miRNA-target relationship. Several web servers have been developed to infer miRNA targets
based on the expression profiles of mMiRNAs and mRNAs from the same set of biological samples
(11-16). For example, Generative model for miRNA regulation (GenMir++ ) uses a Bayesian

model to predict miRNA targets based on both target genes’ 3° UTR region sequence features
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and the correlation between expressions of miRNA and its targets (15). When miRNA
expression data is not available, active miRNA and its targets can be inferred by the enrichment
of its recognized motifs in the 3’ UTRs of suppressed genes in a biological state or process
(17-20). Moreover, The condition-specific mMRNA-miRNA network integrator (mirConnX) uses
transcription factor (TF) binding in the promoter region of miRNAs, as well as mRNA, to
construct transcriptional-posttranscriptional regulatory network (21). Besides, miRNA function
can also be annotated by its target genes’ enrichments in biological pathways, gene ontology

(GO) or diseases (11, 22-24).

Despite the great success of these methods, none of them consider the effects of a miRNA on
target gene’s output at both mRNA and protein levels. In addition to destabilization of mRNA
product, translational repression has been proposed to be another major mechanism of miRNA
regulation. Many examples have shown that miRNA is able to decrease protein level without
changing mRNA abundance (25-27). It is considered that when the mature miRNA pairs with its
target perfectly, argonaute protein’s endonucleolytic active site will cleave the target mRNA’s
nucleotides that pair with bases 10 and 11 of the miRNA guide strand (1). In the cases of
non-perfect pairing, or argonaute protein lacking of endonucleolytic activity, miRNAs regulate
genes through translation repression (1, 28). However, recent study by Brodersen et al. found
that translational repression happened irrespective of the degree of complementarity or
location of target sites within mRNAs (29). Complete complementary paring miRNA may engage
in both mRNA cleavage and translational repression, and consequentially leads to protein
product decrease. Several models have been suggested to describe the translation repression
mechanism, including competition between miRNA-induced silencing complexes (miRISCs) and
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elFAE gene for binding to the mRNA 5’ cap structure, deadenylation of the mRNA tail, ribosome
drop-off and reduced translation elongation (1). Two recent papers reported that miRNA first
inhibited translation initiation and then induced mRNA deadenylation and decay (30, 31). Even
though most of the miRNA targets undergo translational repression followed by decay, there is
a subgroup of targets primarily regulated by translation repression without significant mRNA

decay (30). It is still unclear why some target mRNAs are degraded while others are not.

Due to different mechanisms of miRNA regulation, its targets can either be translationally
repressed without significant decrease in mRNA abundance, or translationally repressed with
concordant decrease in mRNA abundance, or significantly decreased in mRNA abundance with
little protein changes at a certain time point (28, 32, 33). Current methods that use only mRNA
abundance to study miRNA regulatory effect may miss many targets that are suppressed at
protein level but without detectable mRNA changes, or overestimate miRNA’s effect on targets
that do not have detectable changes at protein level but with decreases in mRNA. These kinds
of false negative and/or false positive links between a miRNA and its targets may lead to
misunderstanding of a miRNA’s regulatory network, for example, when the miRNA’s target is a

TF.

Recently, the development of high-throughput quantitative proteomic methods provides us the
opportunity to study the effect of miRNA on target’s protein outputs (32, 34, 35). However,
most of these studies restrict only on one or a few miRNAs or proteins. Furthermore, there is
no published tool for inferring miRNA-centered regulatory network from high-throughput

proteomic data. To fill the gap, we present here a new web server, ProteoMirExpress, which
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integrates mRNA and protein expression data to infer miRNA activities on their direct and
indirect targets in the absence or presence of miRNA expression data and construct the
regulatory networks controlled by miRNAs. We further use several published data to assess the
quality of our inferred networks. The assessment shows that ProteoMirExpressis is able to
effectively infer a miRNA-centered regulatory network and identify subgroups of miRNA targets,

which are usually ignored by current available tools.

Experimental Procedures

Web Server Integration and Implementation

ProteoMirExpress integrates mRNA and proteomic expression data together to infer
miRNA-centered regulatory networks for a specific biological stage or process. The workflow of
ProteoMirExpress is briefly described in Figure 1. It accepts both high throughput mRNA and
proteomic profiling data, and optionally the expression of miRNAs, preferably generated under
the same experiment condition (Figure 1A). The server has the following functions: 1) In the
absence of miRNA expression information, ProteoMirExpress will classify the input genes into
different groups according to their mRNA and protein levels, and infer miRNA networks by
calculating the overlaps between the potentially suppressed gene sets and the miRNA’s target
genes (Figure 1B). 2) In the presence of miRNA expression information, the targets of active
miRNA will be inferred by the anti-correlation between miRNAs and their potential targets in

either mRNA or protein level, or both (Figure 1B). The miRNA target genes are collected from

7|Page



multiple sources, including computational predictions, CLIP/Degradome-seq and experimental
verifications (Figure 1C). The inferred active miRNAs and their targets will be ranked according
to their p-values (Figure 1D). 3) Indirect targets of miRNAs are also predicted by scanning
suppressed mRNAs’ promoters with the binding site information of miRNA-targeted TFs. 4) The
miRNA-centered regulatory network will be visualized on the web page (Figure 1E). Users can

click on each miRNA to inspect all of its targets, as well as miRNA-target interactions.

Inputs

ProteoMirExpress takes inputs in tab-delimited format containing high-throughput protein and
MRNA expressions. With data obtained from the same biological condition, ProteoMirExpress
accepts mRNA and protein expression levels from one biological stage, or expression changes
from two biological stages. For data from one biological stage in one file, the input file should
contain three columns: the identifier of the genes, the corresponding expression values of
MRNA and the expression values of the proteins. Protein and mRNA expression data can also be
inputted in two files, one for protein and the other for mRNA. Each file should contain two
columns: the first one is the identifier of protein or mRNA and the second is the expression
values. ProteoMirExpress will match the protein and mRNA from the same gene for the users if
the input identifies are in different types. ProteoMirExpress can recognize protein and mRNA
identifiers from various databases, such as RefSeq, Ensemble, UCSC, Uniprot, PDB, etc. With
samples achieved from two biological stages, like before or after a certain biological treatment,

ProteoMirExpress accepts the expression fold change (or log,(fold change)) of mRNA and
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protein in one file or two files with the same format described above. ProteoMirExpress also
considers expression change p-value from two stage data if the user input the p-value in the
column next to expression change. Then the input files mentioned above should contain five
columns and three columns respectively. The expression data of miRNAs can also be optionally
inputted with the same format as mRNA and protein. Furthermore, to serve more users,

ProteoMirExpress also accept data from only mRNA or protein for the analysis.

Data analysis procedure

The input genes or miRNAs will be classified into different classes according to their expression
levels (or changes), as well as p-values if applicable. Users can input a customized expression
level (or change) and a p-value cutoff for gene classification. For example, if the expression
change cutoff is 1 (using Log,, 1 means the fold change cutoff is 2 folds), then genes whose
expression decreases to less than 0.5 fold (Log,(expression change) < -1) will be classified as
“Decreased” (D), while genes whose expression change is more than 2 folds (Log,(expression
change) > 1) will be “Increased” (l) and the rest will be “Unchanged” (U). Genes with low
expression or expression suppression in either protein or mRNA level will be regarded as
potential targets of miRNA for further analysis. If the p-value cutoff is set to be 0.05, for
example, only genes whose p-value lower than 0.05 will be classified as significant increased or

decreased genes.

In the absence of miRNA expression information, ProteoMirExpress will calculate the
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significance of overlaps between the potential suppressed gene sets and the predicted target
genes of each miRNAs with hypergeometric test or permutation test. With N genes in the whole
genome, m genes in the potential suppressed gene set (set A), n genes that are the predicted
target genes of a miRNA (set B), and k genes in the overlap of gene set A and B, hypergeometric
p-value is calculated by Equation 1.

_BdED

)

(Equation 1)

Permutation test is performed by randomly selecting m genes from the genome 1000 times. If
the selected genes in g of the 1000 times have more than k genes that are the predicted targets
of a miRNA, the permutation p-value is calculated by p = q/1000 (36). The cutoff of
hypergeometric and permutation p-value is set as 0.05 by default, but can be adjusted by the

user.

In the presence of miRNA expression information, the targets of active miRNA will be inferred
by the anti-correlation between the miRNA expression levels (or changes) and the mRNA or
protein levels (or changes) of their potential targets. The information of miRNAs is collected
from miRBase (37), and information of their target genes is collected from multiple databases.
Computational prediction databases include TargetScan (6), miRanda (5), PicTar (7), PITA (4)
and experimental databases include starBase (8), miRecords (9) and TarBase (10). starBase
contains miRNA targets identified by high throughput method CLIP/Degradome-seq, while
miRecords and TarBase contain experimental verified targets. To integrate multiple databases

from heterogenous sources, we use an Interaction Score (IS) to represent the confidence of the
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link between a miRNA and its target. IS is calculated as the sum of weighted proportion of the
target databases containing the gene with at least one miRNA target site in the three groups of
databases (21). We assign different weights for the three different groups of databases
according to reliability, with experimental validated targets a weight of 4, high throughput

methods a weight of 2, and computational prediction a weight of 1 (Equation 2).

. . . S.
IS = BS54 0, arase + AX LS

- (Equation 2)

where | = (TargetScan, miRanda, PicTar, PITA), J = (miRecords, TarBase), and S;=1 if the target is
present in databases / or J and S;=0 otherwise. The users can input the cutoff to filter off
targets with low score. For example, if cutoff is 0.5, then only targets reported in at least two of
four computational predictions, or any one of CLIP/Degradome-seq database and experiment

collection databases, will be selected for the analysis.

Besides of direct targets, indirect targets of each miRNA are further predicted. When miRNAs
suppress the protein abundance of a TF, targets of the TF may also be suppressed indirectly.
Thus, after miRNA-targeted TFs are identified, the promoters of genes with suppressed mRNA
levels are scanned for putative binding sites of the TFs with the method described by Qin et al.
(38). Indirect targets of the miRNAs are defined as genes with decreased mRNA abundance and
putative binding sites of miRNA-targeted TFs, whose protein abundance is decreased. Users can
adjust several parameters for the binding site scanning, including the size of promoter region,
the statistical p-value cutoff of binding site significance, conservation cutoff and the TF

information sources.
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Output

The inferred miRNA-centered regulatory network will be visualized on a Cytoscape page (39).
The network contains regulatory relationships between miRNAs and their targets. Each node is
a miRNA or a target gene, and each edge is an arrow pointing out from a miRNA or a TF to its
target, which indicates the miRNA’s directly or indirectly suppressing regulatory function. The
weights of the lines are proportional to the IS scores of the miRNA-target pairs. Targets from
different expression gene classes are labeled in different colors (Figure 2). For instance, the
class “UD”, which is colored as blue notes, represents genes that have mRNA levels unchanged
(U) but protein levels decreased (D); while class “ML”, which is colored as light purple notes,
represents genes with medium expression level in mRNA (M) but low expression level in

protein (L).

On the second tap, the inferred active miRNAs are ranked according to their p-values in
potential target gene set. When the users input miRNA expression data, the server will report
two lists of significant miRNAs, one is listed in the “Inputted miRNA” tap which contains the
miRNAs that have high expression or significant expression changes according to the inputted
data, the other is in the “All enriched miRNA” tap which also includes other miRNAs that are
not inputted miRNAs but have enriched target genes with expression changes. Users can select
a sub-group of miRNAs of their interests from one or both miRNA lists to redraw the regulatory
network. Edges between a miRNA from “Inputted miRNA” list and its targets will be shown as
purple lines, while edges between other enriched miRNAs and their targets will be grey lines.

Indirect targets are also shown in the network. Arrows pointing to an indirect target are in sage
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green. Click on a miRNA node, a list of its targets will pop up. Hovering over a target node, users
can find its inputted identifier and gene symbol. Click on it, detail information of the gene will

be found in its web page from National Center for Biotechnology Information (NCBI).

In addition to targets with mRNA suppressed, ProteoMirExpress also outputs targets with only
proteins suppressed but mRNAs unchanged. MiRNAs, enriched in different gene sets classified
according to mRNA and protein levels, can be viewed by clicking on different “Type” buttons.
Click on each miRNA in the network or tables, a list of its target will be shown in a pop-in
window. The miRNA-mRNA interaction site information, hybridization structure and their
sources can be viewed by clicking on the hyperlinks in the “Interaction” and “RNAHybrid”

columns.

Results

To evaluate the performance of ProteoMirExpress, we run several example tests with data from
Baek et al. (35). In the first example, miR-124 was overexpressed in Hela cell, and the global
MRNA and protein expressions were quantified after 24 h and 48 h respectively. With the
inputs of MRNA and protein expression profiles, and miR-124 as the known miRNA with
expression change, ProteoMirExpress generates a list of predicted active miRNAs and their
targets (Table 1). As expected, miR-124 is ranked on the top with the most significant
hypergeometric p-value (1.19E-15) in the potential target gene set, in which genes are
down-regulated in either protein or mRNA level. According to protein and mRNA expression
changes, these potential targets are further classified into three gene sets: “DD” contains genes

that both mRNA and protein are down-regulated, “UD” contains genes that mRNA levels are
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unchanged but protein levels are decreased, and “DU” contains genes that mRNA levels are
decreased but protein levels are unchanged. In “DD” and “DU” gene sets, the hypergeometric
p-values of miR-124 also rank as the first. In “UD”, even though miR-124 is not the most
significant miRNA, the targets of miR-124 are also significantly enriched. Thus,
ProteoMirExpress is able to find not only targets with decreased mRNA abundance but also

those whose protein abundance is decreased.

Three miR-124-targeted TFs, SP1, TFAP4 and TEAD1, are found to have predicted targets whose
MRNA expressions are suppressed in the presence of miR-124 (Figure 2). Since only TFs, whose
protein abundance is decreased, will be analyzed to predict indirect targets, all of the three TFs
have reduced protein levels. However, only TEAD1 has mRNA significantly decreased as well.
The mRNA abundance of SP1 and TFAP4 is not significantly changed (92% and 89% of control
respectively), even though their protein abundance is less than 50% of control (29% and 43%
respectively). SP1 and TFAP4 have 9 and 7 targets in the miR-124 controlled network
respectively, which indicates they may be important downstream regulators for the function of
miR-124. However, these TFs may not be reported as miR-124’s targets by other tools that use

only mRNA expression data for the analysis.

Other miRNAs with significantly enriched targets in the result list are possibly functional-related
to or co-expressed with miR-124 (Table 1). For example, hsa-miR-506, belonging to the same
miRNA family, has very similar expression profiles with miR-124 in lung carcinogenesis (40, 41),
as well as breast cancer samples (42). And miR-124 is known as a neural-specific miRNA and is

suppressed in Huntington’s disease, while hsa-miR-760, hsa-miR-432 and hsa-miR-1301 are also
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found to be down-regulated in the same disease (43). The miR-Ontology Database, miRo, also
reports that hsa-miR-124, hsa-miR-760 and hsa-miR-432 are all associated to brain tissues; and
other enriched miRNAs, such as hsa-miR-943, hsa-miR-548m and hsa-miR-1301 etc., are
associated with Alzheimer's disease (44). The regulatory network controlled by the top 5
enriched miRNAs is shown in Figure 2. More enriched miRNAs are listed in supplementary file
Table S1. Both hypergeometric p-value and permutation p-value of each miRNA are shown, and

the Pearson’s correlation coefficient between two p-values is as high as 0.89.

To further test the performance of ProteoMirExpress in inferring co-expressed miRNA, we run a
second example, in which miR-223 was knocked out in mouse neutrophils, and the mRNA and
protein expression were quantified in day 8 from progenitor differentiation (35). Again,
miR-223 is reported as the most significantly active miRNA by ProteoMirExpress with the inputs
of MRNA and protein expression changes (log,(wild type/knockout)) (Table S2). Of 57 miRNAs
in 20 families that co-expressed with miR-223, 44 miRNAs in 15 families are shown in the
significant miRNA list generated by ProteoMirExpress (Table S2). The co-expression of miRNAs
and the co-occurrence of targeting sites on 3’-UTR are highly correlated (p-value <2.2E-16 in
Fisher’s exact test). Regulatory network with all co-expressed miRNAs gives an overview on the
collaborative regulation of these miRNAs on their targets (Figure 3). It can be seen that
ProteoMirExpress is able to infer active miRNAs in a biological process successfully. In both
cases, ProteoMirExpress finishes the analyses within minutes. By integrating protein expression
data, ProteoMirExpress takes three subgroups of targets into consideration to construct the
miRNA centered regulatory networks, which provides a more comprehensive understanding on
the targets and regulatory functions of miRNAs.
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Discussion

Identification of miRNA targets and construction of miRNA regulatory network are two major
steps in studying the function of miRNA in the complex gene regulatory system. Perturbation
on the expression of a miRNA is commonly used to infer the targets of a miRNA. Genes with
significant changes in mRNA or protein levels after the perturbation are usually considered as
the targets of the miRNA. However in our first case study, miR-124 overexpression causes 105
genes with expression significantly down-regulated, but only 56 of them are direct or indirect
targets of miR-124. This leaves 46% of the down-regulated genes unexplained. Thus we also
report other miRNAs whose targets are enriched in the differentially expressed gene set, which
provides the user hints about other miRNAs that may co-expressed with or be regulated by
miR-124. These regulatory links are shown as grey lines to distinguish from those from miR-124
(Figure 2). With both analyses on input miRNAs and other enriched miRNAs, as well as the
prediction of indirect targets, ProteoMirExpress provides a more complete view of miRNA
effects on the suppressed genes, which covers 92% down-regulated genes. Besides of
perturbation experiments of miRNAs, our web server can also be applied to other biological
studies, such as comparison between different developmental stages or disease status,
inferring @ miRNA-centered regulatory network that controls the gene expression changes

between different biological conditions.

With recent development of high-throughput proteomic methods, such as SILAC (stable isotope

labeling by amino acids in cell culture) (45, 46), PRISM (proteomic investigation strategy for
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mammals) (47) and label-free quantitative methods (48), researchers are able to quantify
protein expression in a large scale. More and more high-throughput proteomic data has been
generated to study a variety of biological processes (49-55). This facilitates the studies on gene
regulation at posttranscriptional level. The complexity of miRNA function mechanism makes it
difficult to infer which level miRNA uses to control each individual target. Integrating
high-throughput mRNA and protein data provides an opportunity to solve this problem.
ProteoMirExpress, taking multiple miRNA function mechanisms into consideration, studies the
effect of miRNA on both mRNAs and proteins. ProteoMirExpress reports not only miRNA
targets that mRNA level are decreased, but also subgroups of targets whose proteins are
suppressed but mRNAs are not significantly changed or mRNAs are decreased but proteins are
not significantly changed, which is made possible only with high-throughput proteomic data.
Current tools commonly use only mRNA expression data to construct miRNA regulatory
networks. With these tools the subgroups of miRNA targets with proteins suppressed but
MRNAs little changed would be completely lost in the network. In the case study of miR-124,
TFs, SP1 and TFAP4, are regulated by miR-124 but their mRNA abundance is not significantly
changed. Without proteomic data, they may not be detected as targets of miR-124 in the
network even though both of them have several downstream targets that indirectly regulated
by the miRNA. Moreover, when a TF is in the subgroups of miRNA targets with mRNA decreased
but protein little affected, genes with putative binding sites of this TF would be reported as
indirect targets of miRNAs by tools using only mRNA expression data. However, since the
protein abundance of the TF is not significantly change, its effects on the downstream targets in

the reported network may not be true. The same problem would also occur when the
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miRNA-regulated proteins control downstream pathways, which lead to misunderstanding the

functions of these miRNA-regulated proteins in the network.

In the two case studies analyzed above, out of 51 direct target genes that are significantly
suppressed (either mRNA is less than 67% of control or protein is less than 50%, since protein
level is measures one day later than mRNA level, and at least one miR-124 site) by the
overexpression of miR-124 in Hela cell, 12 genes (23%) are suppressed in both mRNA and
protein level, 9 genes (18%) are suppressed in only protein level but not mRNA level and 30
genes (59%) are suppressed in only mRNA level but not protein level. While out of 35 direct
target genes that are significantly suppressed by miR-223 (either mRNA in miR-223 knockdown
is less than 67% of control neutrophil cell or protein is less than 67%, and at least one miR-223
site), 6 genes (17%) are suppressed in both mRNA and protein level, 24 genes (69%) are
suppressed in only protein level but not mRNA level and 5 genes (14%) are suppressed in only
mMRNA level but not protein level. It seems that the proportion of each subgroup of targets can
be different for different miRNAs or maybe different cells. Data collection time is also thought
to affect the proportion of different subgroups, since short time courses after miRNA
perturbation but before deadenylation may lead to more observations of “UD” group (30, 31,
56, 57). On the other hand, long time courses after miRNA perturbation, when mRNA
deadenylation and decay shows strong effects, may report more genes from “DD” group (58,
59). However, in an experiment with long time scales, where the miRNA effects are steady, less
direct targets but more indirect targets will be detected. Thus, the determination of data

collection time is an important issue in miRNA targets identification studies.
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It has been reported that miRNA affected target gene’s expression through both translation
inhibition and RNA degradation, and the former effect is relatively mild compared with the later
(32). This implies that multiple strategies are used by miRNA to refine the control on their
targets in a quantitative manner. With the analysis of ProteoMirExpress, we find a subgroup of
targets whose mRNAs are suppressed but protein levels are not significantly changed. It
indicates that degradation of mMRNA may not immediately suppress the protein level. This may
be caused by the low protein degradation rate of these targets. Thus for this group of targets,
the effect of miRNA seems to stop the increase of their protein level but not to immediately
decrease them. The three groups of targets detected by ProteoMirExpress demonstrate the
limitation of using either mRNA or protein data alone to study the effect of miRNA. Either
method may lose a subgroup of targets. Thus with the integrative approach, ProteoMirExpress
provides the users a more complete and detail regulatory network controlled by miRNAs.
Further analyses on the functions, binding site sequences and expression details of different
subgroups of miRNA targets will improve our understanding on the strategy that a miRNA uses

to preciously control thousands of targets.

FUNDING

This work was supported by University Postgraduate Fellowship of the University of Hong Kong;
Food and Health Bureau of Hong Kong [10091262] and Research Grants Council of Hong Kong

[781511M, N_HKU752/10].

Conflict of interest statement. None declared.

19| Page



Reference

1. Carthew, R. W., and Sontheimer, E. J. (2009) Origins and Mechanisms of miRNAs and
siRNAs. Cell 136, 642-655.

2. Calin, G. A, and Croce, C. M. (2006) MicroRNA signatures in human cancers. Nature reviews.
Cancer 6, 857-866.

3. Rehmsmeier, M., Steffen, P., Hochsmann, M., and Giegerich, R. (2004) Fast and effective
prediction of microRNA/target duplexes. RNA 10, 1507-1517.

4. Kertesz, M., lovino, N., Unnerstall, U., Gaul, U., and Segal, E. (2007) The role of site
accessibility in microRNA target recognition. Nature genetics 39, 1278-1284.

5. Betel, D., Wilson, M., Gabow, A., Marks, D. S., and Sander, C. (2008) The microRNA.org
resource: targets and expression. Nucleic Acids Res 36, D149-153.

6. Lewis, B. P., Shih, I. H., Jones-Rhoades, M. W., Bartel, D. P., and Burge, C. B. (2003)
Prediction of mammalian microRNA targets. Cell 115, 787-798.

7. Krek, A., Grun, D., Poy, M. N., Wolf, R., Rosenberg, L., Epstein, E. J., MacMenamin, P., da
Piedade, I., Gunsalus, K. C., Stoffel, M., and Rajewsky, N. (2005) Combinatorial microRNA target
predictions. Nature genetics 37, 495-500.

8. Yang, J. H, Li, J. H, Shao, P., Zhou, H., Chen, Y. Q., and Qu, L. H. (2011) starBase: a database
for exploring microRNA-mRNA interaction maps from Argonaute CLIP-Seq and Degradome-Seq
data. Nucleic Acids Res 39, D202-209.

9. Xiao, F., Zuo, Z., Cai, G., Kang, S., Gao, X., and Li, T. (2009) miRecords: an integrated
resource for microRNA-target interactions. Nucleic Acids Res 37, D105-110.

10. Papadopoulos, G. L., Reczko, M., Simossis, V. A., Sethupathy, P., and Hatzigeorgiou, A. G.
(2009) The database of experimentally supported targets: a functional update of TarBase.
Nucleic Acids Res 37, D155-158.

11. Nam, S., Li, M., Choi, K., Balch, C., Kim, S., and Nephew, K. P. (2009) MicroRNA and mRNA
integrated analysis (MMIA): a web tool for examining biological functions of microRNA
expression. Nucleic Acids Res 37, W356-362.

12. Hausser, J., Berninger, P., Rodak, C., Jantscher, Y., Wirth, S., and Zavolan, M. (2009) MirZ:
an integrated microRNA expression atlas and target prediction resource. Nucleic Acids Res 37,
W266-272.

13. Hsu, S. D., Chu, C. H., Tsou, A. P, Chen, S. J., Chen, H. C,, Hsu, P. W., Wong, Y. H., Chen, Y. H.,
Chen, G. H., and Huang, H. D. (2008) miRNAMap 2.0: genomic maps of microRNAs in metazoan
genomes. Nucleic Acids Res 36, D165-169.

14. Sales, G., Coppe, A., Bisognin, A., Biasiolo, M., Bortoluzzi, S., and Romualdi, C. (2010)
MAGIA, a web-based tool for miRNA and Genes Integrated Analysis. Nucleic Acids Res 38,
W352-359.

15. Huang, J. C., Babak, T., Corson, T. W., Chua, G., Khan, S., Gallie, B. L., Hughes, T. R,,
Blencowe, B. J., Frey, B. J., and Morris, Q. D. (2007) Using expression profiling data to identify
human microRNA targets. Nature methods 4, 1045-1049.

20| Page



16. Liang, Z., Zhou, H., He, Z., Zheng, H., and Wu, J. (2011) mirAct: a web tool for evaluating
microRNA activity based on gene expression data. Nucleic Acids Res.

17. Sood, P., Krek, A., Zavolan, M., Macino, G., and Rajewsky, N. (2006) Cell-type-specific
signatures of microRNAs on target mRNA expression. Proceedings of the National Academy of
Sciences of the United States of America 103, 2746-2751.

18. Cheng, C., and Li, L. M. (2008) Inferring microRNA activities by combining gene expression
with microRNA target prediction. PloS one 3, e1989.

19. van Dongen, S., Abreu-Goodger, C., and Enright, A. J. (2008) Detecting microRNA binding
and siRNA off-target effects from expression data. Nature methods 5, 1023-1025.

20. Alexiou, P., Maragkakis, M., Papadopoulos, G. L., Simmosis, V. A., Zhang, L., and
Hatzigeorgiou, A. G. (2010) The DIANA-mirExTra web server: from gene expression data to
microRNA function. PloS one 5, e9171.

21. Huang, G. T., Athanassiou, C., and Benos, P. V. (2011) mirConnX: condition-specific
MRNA-microRNA network integrator. Nucleic Acids Res.

22. Cho, S, Jun, Y., Lee, S., Choi, H. S,, Jung, S., Jang, Y., Park, C.,, Kim, S., Lee, S., and Kim, W.
(2011) miRGator v2.0: an integrated system for functional investigation of microRNAs. Nucleic
Acids Res 39, D158-162.

23. Maragkakis, M., Vergoulis, T., Alexiou, P., Reczko, M., Plomaritou, K., Gousis, M., Kourtis, K.,
Koziris, N., Dalamagas, T., and Hatzigeorgiou, A. G. (2011) DIANA-microT Web server upgrade
supports Fly and Worm miRNA target prediction and bibliographic miRNA to disease association.
Nucleic Acids Res 39, W145-148.

24. Chiromatzo, A. O., Oliveira, T. Y., Pereira, G., Costa, A. Y., Montesco, C. A., Gras, D. E.,
Yosetake, F., Vilar, J. B., Cervato, M., Prado, P. R., Cardenas, R. G., Cerri, R., Borges, R. L., Lemos,
R. N., Alvarenga, S. M., Perallis, V. R., Pinheiro, D. G., Silva, |. T., Brandao, R. M., Cunha, M. A.,
Giuliatti, S., and Silva, W. A., Jr. (2007) miRNApath: a database of miRNAs, target genes and
metabolic pathways. Genetics and molecular research : GMR 6, 859-865.

25. Wightman, B., Ha, |, and Ruvkun, G. (1993) Posttranscriptional regulation of the
heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75,
855-862.

26. Chen, X. (2004) A microRNA as a translational repressor of APETALA2 in Arabidopsis flower
development. Science 303, 2022-2025.

27. Doench, J. G., and Sharp, P. A. (2004) Specificity of microRNA target selection in
translational repression. Genes & development 18, 504-511.

28. Wu, L., Fan, J., and Belasco, J. G. (2008) Importance of translation and nonnucleolytic ago
proteins for on-target RNA interference. Current biology : CB 18, 1327-1332.

29. Brodersen, P., Sakvarelidze-Achard, L., Bruun-Rasmussen, M., Dunoyer, P., Yamamoto, Y. Y.,
Sieburth, L., and Voinnet, O. (2008) Widespread translational inhibition by plant miRNAs and
siRNAs. Science 320, 1185-1190.

30. Bazzini, A. A,, Lee, M. T., and Giraldez, A. J. (2012) Ribosome profiling shows that miR-430
reduces translation before causing mRNA decay in zebrafish. Science 336, 233-237.

31. Djuranovic, S., Nahvi, A, and Green, R. (2012) miRNA-mediated gene silencing by
translational repression followed by mRNA deadenylation and decay. Science 336, 237-240.
32.Selbach, M., Schwanhausser, B., Thierfelder, N., Fang, Z., Khanin, R., and Rajewsky, N. (2008)
Widespread changes in protein synthesis induced by microRNAs. Nature 455, 58-63.

21| Page



33. Eulalio, A., Rehwinkel, J., Stricker, M., Huntzinger, E., Yang, S. F., Doerks, T., Dorner, S., Bork,
P., Boutros, M., and lzaurralde, E. (2007) Target-specific requirements for enhancers of
decapping in miRNA-mediated gene silencing. Genes & development 21, 2558-2570.

34. Vinther, J., Hedegaard, M. M., Gardner, P. P., Andersen, J. S., and Arctander, P. (2006)
Identification of miRNA targets with stable isotope labeling by amino acids in cell culture.
Nucleic Acids Res 34, e107.

35. Baek, D., Villen, J., Shin, C., Camargo, F. D., Gygi, S. P., and Bartel, D. P. (2008) The impact of
microRNAs on protein output. Nature 455, 64-71.

36. Li, M. J.,, Sham, P. C., and Wang, J. (2010) FastPval: a fast and memory efficient program to
calculate very low P-values from empirical distribution. Bioinformatics 26, 2897-2899.

37. Griffiths-Jones, S., Grocock, R. J., van Dongen, S., Bateman, A., and Enright, A. J. (2006)
miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34,
D140-144.

38. Qin, J., Li, M. J., Wang, P., Zhang, M. Q., and Wang, J. (2011) ChIP-Array: combinatory
analysis of ChIP-seq/chip and microarray gene expression data to discover direct/indirect
targets of a transcription factor. Nucleic Acids Res 39, W430-436.

39. Shannon, P., Markiel, A., Ozier, O., Baliga, N. S.,, Wang, J. T., Ramage, D., Amin, N.,
Schwikowski, B., and Ideker, T. (2003) Cytoscape: a software environment for integrated
models of biomolecular interaction networks. Genome research 13, 2498-2504.

40. Zhao, Y., Liu, H,, Li, Y., Wu, J.,, Greenlee, A. R,, Yang, C., and lJiang, Y. (2011) The role of
miR-506 in transformed 16HBE cells induced by
anti-benzo[a]pyrene-trans-7,8-dihydrodiol-9,10-epoxide. Toxicol Lett 205, 320-326.

41. lzzotti, A, Calin, G. A., Steele, V. E., Croce, C. M., and De Flora, S. (2009) Relationships of
microRNA expression in mouse lung with age and exposure to cigarette smoke and light. Faseb
J 23, 3243-3250.

42. Wang, Y., Klijn, J. G., Zhang, Y., Sieuwerts, A. M., Look, M. P., Yang, F., Talantov, D.,
Timmermans, M., Meijer-van Gelder, M. E., Yu, J., Jatkoe, T., Berns, E. M., Atkins, D., and
Foekens, J. A. (2005) Gene-expression profiles to predict distant metastasis of
lymph-node-negative primary breast cancer. Lancet 365, 671-679.

43. Marti, E., Pantano, L., Banez-Coronel, M., Llorens, F., Minones-Moyano, E., Porta, S., Sumoy,
L., Ferrer, I, and Estivill, X. (2010) A myriad of miRNA variants in control and Huntington's
disease brain regions detected by massively parallel sequencing. Nucleic acids research 38,
7219-7235.

44. Lagana, A, Forte, S., Giudice, A., Arena, M. R., Puglisi, P. L., Giugno, R., Pulvirenti, A., Shasha,
D., and Ferro, A. (2009) miRo: a miRNA knowledge base. Database : the journal of biological
databases and curation 2009, bap008.

45. Ong, S. E., Blagoev, B., Kratchmarova, I., Kristensen, D. B., Steen, H., Pandey, A., and Mann,
M. (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate
approach to expression proteomics. Mol Cell Proteomics 1, 376-386.

46. Gruhler, S., and Kratchmarova, |. (2008) Stable isotope labeling by amino acids in cell
culture (SILAC). Methods Mol Biol 424, 101-111.

47. Kislinger, T., Rahman, K., Radulovic, D., Cox, B., Rossant, J., and Emili, A. (2003) PRISM, a
generic large scale proteomic investigation strategy for mammals. Mol Cell Proteomics 2,
96-106.

22 |Page



48. Zhu, W., Smith, J. W., and Huang, C. M. (2010) Mass spectrometry-based label-free
guantitative proteomics. J Biomed Biotechnol 2010, 840518.

49. Everley, P. A., Krijgsveld, J., Zetter, B. R., and Gygi, S. P. (2004) Quantitative cancer
proteomics: stable isotope labeling with amino acids in cell culture (SILAC) as a tool for prostate
cancer research. Mol Cell Proteomics 3, 729-735.

50. Graumann, J., Hubner, N. C., Kim, J. B., Ko, K., Moser, M., Kumar, C., Cox, J., Scholer, H., and
Mann, M. (2008) Stable isotope labeling by amino acids in cell culture (SILAC) and proteome
guantitation of mouse embryonic stem cells to a depth of 5,111 proteins. Mol Cell Proteomics 7,
672-683.

51. Gronborg, M., Kristiansen, T. Z., Iwahori, A., Chang, R., Reddy, R., Sato, N., Molina, H.,
Jensen, O. N., Hruban, R. H., Goggins, M. G., Maitra, A., and Pandey, A. (2006) Biomarker
discovery from pancreatic cancer secretome using a differential proteomic approach. Mol Cell
Proteomics 5, 157-171.

52. Romijn, E. P., Christis, C., Wieffer, M., Gouw, J. W., Fullaondo, A., van der Sluijs, P.,
Braakman, 1., and Heck, A. J. (2005) Expression clustering reveals detailed co-expression
patterns of functionally related proteins during B cell differentiation: a proteomic study using a
combination of one-dimensional gel electrophoresis, LC-MS/MS, and stable isotope labeling by
amino acids in cell culture (SILAC). Mol Cell Proteomics 4, 1297-1310.

53. Tian, R., Wang, S., Elisma, F., Li, L., Zhou, H., Wang, L., and Figeys, D. (2011) Rare cell
proteomic reactor applied to stable isotope labeling by amino acids in cell culture (SILAC)-based
guantitative proteomics study of human embryonic stem cell differentiation. Mol Cell
Proteomics 10, M110 000679.

54. Lundberg, E., Fagerberg, L., Klevebring, D., Matic, |., Geiger, T., Cox, J., Algenas, C,
Lundeberg, J., Mann, M., and Uhlen, M. (2010) Defining the transcriptome and proteome in
three functionally different human cell lines. Mol Syst Biol 6, 450.

55. Cui, Z., Chen, X, Lu, B., Park, S. K., Xu, T., Xie, Z., Xue, P., Hou, J., Hang, H., Yates, J. R., 3rd,
and Yang, F. (2009) Preliminary quantitative profile of differential protein expression between
rat L6 myoblasts and myotubes by stable isotope labeling with amino acids in cell culture.
Proteomics 9, 1274-1292.

56. Mathonnet, G., Fabian, M. R., Svitkin, Y. V., Parsyan, A., Huck, L., Murata, T., Biffo, S.,
Merrick, W. C., Darzynkiewicz, E., Pillai, R. S., Filipowicz, W., Duchaine, T. F., and Sonenberg, N.
(2007) MicroRNA inhibition of translation initiation in vitro by targeting the cap-binding
complex elF4F. Science 317, 1764-1767.

57. Thermann, R., and Hentze, M. W. (2007) Drosophila miR2 induces pseudo-polysomes and
inhibits translation initiation. Nature 447, 875-878.

58. Guo, H., Ingolia, N. T., Weissman, J. S., and Bartel, D. P. (2010) Mammalian microRNAs
predominantly act to decrease target mRNA levels. Nature 466, 835-840.

59. Hendrickson, D. G., Hogan, D. J., McCullough, H. L., Myers, J. W., Herschlag, D., Ferrell, J. E.,
and Brown, P. O. (2009) Concordant regulation of translation and mRNA abundance for
hundreds of targets of a human microRNA. PLoS Biol 7, e1000238.

23| Page



Figure Legends

Figure 1. Overview of ProteoMirExpress workflow. A: input of high throughput mRNA and
proteomic profiling data, expression of miRNAs input is optional; B: data analysis of
ProteoMirExpress; C: the information sources of miRNAtarget; D: table outputs; E:

miRNA-centered posttranscriptional regulatory network andmiRNA-target interactions.

Figure 2.miRNA regulatory network with the top 10 enriched miRNAs in Hela cells with
miR-124 overexpression(p-value < 1E-4). Each node is either a miRNA or a gene. Each edge is
an arrow pointing out from a miRNA to its target, indicating its suppressing role. The weights of
the lines are proportional to the IS scores of the miRNA-target pairs. Edges in purple line:
connection between a miRNA from “Inputted miRNA” list and its targets; Edges in grey line:
connection between other enriched miRNAs and their targets Nodes in blue: genes in “UD”
class, having mRNA levels unchanged (U) but protein levels decreased (D); Nodes in green:
genes in “ML” class, having medium expression level in mRNA (M) but low expression level in
protein (L). Nodes in pink: genes in “D” class, having decreased expression in mRNA or protein

when only mRNA or protein data is inputted but not both.

Figure 3. miRNA regulatory network with the co-expressed miRNAs in miR-223 expressed

mouse neutrophils. Refer to Figure 2 legend for detail description of the graph.
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Table 1. Inferred active miRNAs by ProteoMirExpress in Hela cells with miR-124

overexpression (p-value < 1E-4).

No. of No.in  p-valuein No.in  p-valuein No.in  p-valuein
miRNA targets p-value DD* DD* uD* uD* DU* DU*
hsa-miR-124 51 1.19E-15 12 2.04E-08 9 1.83E-03 30 2.62E-08
hsa-miR-506 46 4.96E-13 11 2.49E-07 9 1.28E-03 26 2.03E-06
hsa-miR-760 13 3.09E-06 3 5.41E-03 3 1.44E-02 7 1.82E-03
hsa-miR-943 9 1.78E-05 3 1.01E-03 2 3.20E-02 4 1.45E-02
hsa-miR-548m 16 2.19E-05 5 3.47E-04 5 1.99E-03 6 6.31E-02
hsa-miR-545 18 2.94E-05 3 4.21E-02 5 5.24E-03 10 5.11E-03
hsa-miR-525-3p 7 4.94E-05 2 7.43E-03 0 - 5 4.21E-04
hsa-miR-802 14 6.03E-05 4 1.99E-03 3 4.03E-02 7 1.49E-02
hsa-miR-1252 16 1.15E-04 5 6.69E-04 6 5.45E-04 5 1.50E-01
hsa-miR-432 14 1.17E-04 2 1.05E-01 5 1.38E-03 7 1.98E-02
hsa-miR-564 5 1.48E-04 1 6.58E-02 1 9.12E-02 3 4.33E-03
hsa-miR-323b-5p 10 2.50E-04 2 4.52E-02 3 1.30E-02 5 2.27E-02
hsa-miR-513c 10 4.32E-04 3 5.90E-03 2 8.99E-02 5 2.89E-02
hsa-miR-544 30 4.46E-04 6 1.50E-02 6 6.47E-02 18 1.21E-02
hsa-miR-548p 18 5.42E-04 4 1.69E-02 5 1.36E-02 9 4.25E-02
hsa-miR-922 13 5.53E-04 2 1.10E-01 2 1.73E-01 9 2.65E-03
hsa-miR-1301 10 6.76E-04 2 5.64E-02 2 9.83E-02 6 1.11E-02
hsa-miR-518b 5 7.05E-04 1 9.08E-02 2 8.42E-03 2 7.02E-02
hsa-miR-1197 8 7.33E-04 4 1.26E-04 3 6.30E-03 1 3.55E-01
hsa-miR-518c* 6 7.37E-04 0 - 2 1.85E-02 4 5.40E-03
hsa-miR-381 33 7.81E-04 6 3.07E-02 8 2.08E-02 19 2.58E-02
hsa-miR-765 11 8.46E-04 4 1.22E-03 3 2.95E-02 4 1.31E-01
hsa-miR-1227 6 8.75E-04 1 1.37E-01 1 1.82E-01 4 6.05E-03
hsa-miR-1266 8 9.01E-04 1 2.19E-01 2 5.50E-02 5 9.63E-03
hsa-miR-661 8 9.66E-04 3 2.57E-03 3 7.10E-03 2 2.44E-01

*Gene classes “DD” contains genes that both mRNA and protein are down-regulated, “UD”
contains genes that mRNA levels are unchanged but protein levels are decreased, and “DU”

contains genes that mRNA levels are decreased but protein levels are unchanged.
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