75 research outputs found
MUC16 (mucin 16, cell surface associated)
Review on MUC16 (mucin 16, cell surface associated), with data on DNA, on the protein encoded, and where the gene is implicated
Beetle (Coleoptera: Scirtidae) Facilitation of Larval Mosquito Growth in Tree Hole Habitats is Linked to Multitrophic Microbial Interactions
Container-breeding mosquitoes, such as Aedes triseriatus, ingest biofilms and filter water column microorganisms directly to obtain the bulk of their nutrition. Scirtid beetles often co-occur with A. triseriatus and may facilitate the production of mosquito adults under low-resource conditions. Using molecular genetic techniques and quantitative assays, we observed changes in the dynamics and composition of bacterial and fungal communities present on leaf detritus and in the water column when scirtid beetles co-occur with A. triseriatus. Data from terminal restriction fragment polymorphism analysis indicated scirtid presence alters the structure of fungal communities in the water column but not leaf-associated fungal communities. Similar changes in leaf and water bacterial communities occurred in response to mosquito presence. In addition, we observed increased processing of leaf detritus, higher leaf-associated enzyme activity, higher bacterial productivity, and higher leaf-associated fungal biomass when scirtid beetles were present. Such shifts suggest beetle feeding facilitates mosquito production indirectly through the microbial community rather than directly through an increase in available fine particulate organic matter
Monoclonal Antibodies Recognizing the Non-Tandem Repeat Regions of the Human Mucin MUC4 in Pancreatic Cancer
The MUC4 mucin is a high molecular weight, membrane-bound, and highly glycosylated protein. It is a multi-domain protein that is putatively cleaved into a large mucin-like subunit (MUC4α) and a C-terminal growth-factor like subunit (MUC4β). MUC4 plays critical roles in physiological and pathological conditions and is aberrantly overexpressed in several cancers, including those of the pancreas, cervix, breast and lung. It is also a potential biomarker for the diagnosis, prognosis and progression of several malignancies. Further, MUC4 plays diverse functional roles in cancer initiation and progression as evident from its involvement in oncogenic transformation, proliferation, inhibition of apoptosis, motility and invasion, and resistance to chemotherapy in human cancer cells. We have previously generated a monoclonal antibody 8G7, which is directed against the TR region of MUC4, and has been extensively used to study the expression of MUC4 in several malignancies. Here, we describe the generation of anti-MUC4 antibodies directed against the non-TR regions of MUC4. Recombinant glutathione-S-transferase (GST)-fused MUC4α fragments, both upstream (MUC4α-N-Ter) and downstream (MUC4α-C-Ter) of the TR domain, were used as immunogens to immunize BALB/c mice. Following cell fusion, hybridomas were screened using the aforementioned recombinant proteins ad lysates from human pancreatic cell lines. Three anti MUC4α-N-Ter and one anti-MUC4α-C-Ter antibodies were characterized by several inmmunoassays including enzyme-linked immunosorbent assay (ELISA), immunoblotting, immunofluorescene, flow cytometry and immunoprecipitation using MUC4 expressing human pancreatic cancer cell lines. The antibodies also reacted with the MUC4 in human pancreatic tumor sections in immunohistochemical analysis. The new domain-specific anti-MUC4 antibodies will serve as important reagents to study the structure-function relationship of MUC4 domains and for the development of MUC4-based diagnostics and therapeutics
Properties of multivalent functions associated with the integral operator defined by the hypergeometric function
Human RNA Polymerase II-Association Factor 1 (hPaf1/PD2) Regulates Histone Methylation and Chromatin Remodeling in Pancreatic Cancer
Change in gene expression associated with pancreatic cancer could be attributed to the variation in histone posttranslational modifications leading to subsequent remodeling of the chromatin template during transcription. However, the interconnected network of molecules involved in regulating such processes remains elusive. hPaf1/PD2, a subunit of the human PAF-complex, involved in the regulation of transcriptional elongation has oncogenic potential. Our study explores the possibility that regulation of histone methylation by hPaf1 can contribute towards alteration in gene expression by nucleosomal rearrangement. Here, we show that knockdown of hPaf1/PD2 leads to decreased di- and tri-methylation at histone H3 lysine 4 residues in pancreatic cancer cells. Interestingly, hPaf1/PD2 colocalizes with MLL1 (Mixed Lineage Leukemia 1), a histone methyltransferase that methylates H3K4 residues. Also, a reduction in hPaf1 level resulted in reduced MLL1 expression and a corresponding decrease in the level of CHD1 (Chromohelicase DNA-binding protein 1), an ATPase dependent chromatin remodeling enzyme that specifically binds to H3K4 di and trimethyl marks. hPaf1/PD2 was also found to interact and colocalize with CHD1 in both cytoplasmic and nuclear extracts of pancreatic cancer cells. Further, reduced level of CHD1 localization in the nucleus in hPaf1/PD2 Knockdown cells could be rescued by ectopic expression of hPaf1/PD2. Micrococcal nuclease digestion showed an altered chromatin structure in hPaf1/PD2-KD cells. Overall, our results suggest that hPaf1/PD2 in association with MLL1 regulates methylation of H3K4 residues, as well as interacts and regulates nuclear shuttling of chromatin remodeling protein CHD1, facilitating its function in pancreatic cancer cells
Pathobiological Implications of MUC16 Expression in Pancreatic Cancer
MUC16 (CA125) belongs to a family of high-molecular weight O-glycosylated proteins known as mucins. While MUC16 is well known as a biomarker in ovarian cancer, its expression pattern in pancreatic cancer (PC), the fourth leading cause of cancer related deaths in the United States, remains unknown. The aim of our study was to analyze the expression of MUC16 during the initiation, progression and metastasis of PC for possible implication in PC diagnosis, prognosis and therapy. In this study, a microarray containing tissues from healthy and PC patients was used to investigate the differential protein expression of MUC16 in PC. MUC16 mRNA levels were also measured by RT-PCR in the normal human pancreatic, pancreatitis, and PC tissues. To investigate its expression pattern during PC metastasis, tissue samples from the primary pancreatic tumor and metastases (from the same patient) in the lymph nodes, liver, lung and omentum from Stage IV PC patients were analyzed. To determine its association in the initiation of PC, tissues from PC patients containing pre-neoplastic lesions of varying grades were stained for MUC16. Finally, MUC16 expression was analyzed in 18 human PC cell lines. MUC16 is not expressed in the normal pancreatic ducts and is strongly upregulated in PC and detected in pancreatitis tissue. It is first detected in the high-grade pre-neoplastic lesions preceding invasive adenocarcinoma, suggesting that its upregulation is a late event during the initiation of this disease. MUC16 expression appears to be stronger in metastatic lesions when compared to the primary tumor, suggesting a role in PC metastasis. We have also identified PC cell lines that express MUC16, which can be used in future studies to elucidate its functional role in PC. Altogether, our results reveal that MUC16 expression is significantly increased in PC and could play a potential role in the progression of this disease
The SARS-Unique Domain (SUD) of SARS Coronavirus Contains Two Macrodomains That Bind G-Quadruplexes
Since the outbreak of severe acute respiratory syndrome (SARS) in 2003, the three-dimensional structures of several of the replicase/transcriptase components of SARS coronavirus (SARS-CoV), the non-structural proteins (Nsps), have been determined. However, within the large Nsp3 (1922 amino-acid residues), the structure and function of the so-called SARS-unique domain (SUD) have remained elusive. SUD occurs only in SARS-CoV and the highly related viruses found in certain bats, but is absent from all other coronaviruses. Therefore, it has been speculated that it may be involved in the extreme pathogenicity of SARS-CoV, compared to other coronaviruses, most of which cause only mild infections in humans. In order to help elucidate the function of the SUD, we have determined crystal structures of fragment 389–652 (“SUDcore”) of Nsp3, which comprises 264 of the 338 residues of the domain. Both the monoclinic and triclinic crystal forms (2.2 and 2.8 Å resolution, respectively) revealed that SUDcore forms a homodimer. Each monomer consists of two subdomains, SUD-N and SUD-M, with a macrodomain fold similar to the SARS-CoV X-domain. However, in contrast to the latter, SUD fails to bind ADP-ribose, as determined by zone-interference gel electrophoresis. Instead, the entire SUDcore as well as its individual subdomains interact with oligonucleotides known to form G-quadruplexes. This includes oligodeoxy- as well as oligoribonucleotides. Mutations of selected lysine residues on the surface of the SUD-N subdomain lead to reduction of G-quadruplex binding, whereas mutations in the SUD-M subdomain abolish it. As there is no evidence for Nsp3 entering the nucleus of the host cell, the SARS-CoV genomic RNA or host-cell mRNA containing long G-stretches may be targets of SUD. The SARS-CoV genome is devoid of G-stretches longer than 5–6 nucleotides, but more extended G-stretches are found in the 3′-nontranslated regions of mRNAs coding for certain host-cell proteins involved in apoptosis or signal transduction, and have been shown to bind to SUD in vitro. Therefore, SUD may be involved in controlling the host cell's response to the viral infection. Possible interference with poly(ADP-ribose) polymerase-like domains is also discussed
SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion
The B.1.617.2 (Delta) variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first identified in the state of Maharashtra in late 2020 and spread throughout India, outcompeting pre-existing lineages including B.1.617.1 (Kappa) and B.1.1.7 (Alpha)1. In vitro, B.1.617.2 is sixfold less sensitive to serum neutralizing antibodies from recovered individuals, and eightfold less sensitive to vaccine-elicited antibodies, compared with wild-type Wuhan-1 bearing D614G. Serum neutralizing titres against B.1.617.2 were lower in ChAdOx1 vaccinees than in BNT162b2 vaccinees. B.1.617.2 spike pseudotyped viruses exhibited compromised sensitivity to monoclonal antibodies to the receptor-binding domain and the amino-terminal domain. B.1.617.2 demonstrated higher replication efficiency than B.1.1.7 in both airway organoid and human airway epithelial systems, associated with B.1.617.2 spike being in a predominantly cleaved state compared with B.1.1.7 spike. The B.1.617.2 spike protein was able to mediate highly efficient syncytium formation that was less sensitive to inhibition by neutralizing antibody, compared with that of wild-type spike. We also observed that B.1.617.2 had higher replication and spike-mediated entry than B.1.617.1, potentially explaining the B.1.617.2 dominance. In an analysis of more than 130 SARS-CoV-2-infected health care workers across three centres in India during a period of mixed lineage circulation, we observed reduced ChAdOx1 vaccine effectiveness against B.1.617.2 relative to non-B.1.617.2, with the caveat of possible residual confounding. Compromised vaccine efficacy against the highly fit and immune-evasive B.1.617.2 Delta variant warrants continued infection control measures in the post-vaccination era
PAF1 (Paf1, RNA polymerase II associated factor, homolog (S. cerevisiae))
Review on PAF1 (Paf1, RNA polymerase II associated factor, homolog (S. cerevisiae)), with data on DNA, on the protein encoded, and where the gene is implicated
- …
