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1 Introduction and preliminaries
Let Ap denote the class of functions f (z) of the form

f (z) = zp +
∞∑

n=p+

anzn
(
p ∈ N = {, , , . . .}), (.)

which are analytic in the open unit disc E. Also A = A, the usual class of analytic func-
tions defined in the open unit disc E = {z : |z| < }. A function f ∈ Ap is a p-valent starlike
function of order ρ if and only if

Re
zf ′(z)
f (z)

> ρ,  ≤ ρ < p, z ∈ E.

This class of functions is denoted by S∗
p(ρ). It is noted that S∗

p() = S∗
p . Let f (z) and g(z) be

analytic in E, we say f (z) is subordinate to g(z), written f ≺ g or f (z) ≺ g(z) if there exists a
Schwarz function w(z), w() =  and |w(z)| <  in E, then f (z) = g(w(z)). In particular, if g
is univalent in E, then we have the following equivalence

f (z) ≺ g(z) ⇐⇒ f () = g() and f (E)⊂ g(E).

For any two analytic functions f (z) and g(z) with

f (z) =
∞∑
n=

bnzn+ and g(z) =
∞∑
n=

cnzn+, z ∈ E,
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the convolution (the Hadamard product) is given by

(f ∗ g)(z) =
∞∑
n=

bncnzn+, z ∈ E.

A function f ∈ A is said to be in the class, denoted by SD(k, δ) ( ≤ δ < ), if and only if

Re

{
zf ′(z)
f (z)

}
> k

∣∣∣∣zf
′(z)

f (z)
– 

∣∣∣∣ + δ, k ≥ , z ∈ E. (.)

Similarly, a function f ∈ A is said to be in the class, denoted by CD(k, δ) of k-uniformly
convex of order δ (≤ δ < ), if

Re

{
 +

zf ′′(z)
f ′(z)

}
> k

∣∣∣∣zf
′′(z)

f ′(z)

∣∣∣∣ + δ, k ≥ , z ∈ E. (.)

Geometric interpretation The functions f ∈ SD(k, δ) and f ∈ CD(k, δ) if and only if zf ′(z)
f (z)

and zf ′′(z)
f (z) + , respectively, take all the values in the conic domain �k,δ defined by

�k,δ =
{
u + iv : u > k

√
(u – ) + v + δ

}

with p(z) = zf ′(z)
f (z) or p(z) = zf ′′(z)

f ′(z) +  and considering the functions which map E onto the
conic domain �k,δ such that  ∈ �k,δ . One may rewrite the conditions (.) or (.) in the
form

p(z) ≺ qk,δ(z).

The function qk,δ(z) plays the role of extremal for these classes and is given by

qk,δ(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

+(–δ)z
–z , k = ,

 + δγ
π (log

+
√
z

–
√
z )

, k = ,

 + δ
–k sinh

[( 
π
arccosk) arctanh

√
z],  < k < ,

 + δ

k– sin(
π

R(t)
∫ u(z)√

t


√
–x

√
–(tx)

dx) + δ

k– , k > .

(.)

For f (z) in Ap, the operator Dμ+p– : Ap −→ Ap is defined by

Dμ+p–f (z) =
zp

( – z)μ+p
∗ f (z) (μ > –p),

or equivalently

Dμ+p–f (z) =
zp(zμ–f (z))μ+p–

(μ + p – )!
, (.)

where μ is any integer greater than –p. If f (z) is given by (.), then it follows that

Dμ+p–f (z) = zp +
∞∑

n=p+

(μ + n – )!
(n – p)!(μ + p – )!

anzn.
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The symbolDμ+p– when p = , was introduced by Ruscheweyh [] andDμ+p– is called the
(μ+ p– )th order Ruscheweyh derivative. We now introduce a function (zpF(a,b, c; z))–

given by

(
zpF(a,b, c; z)

) ∗ (
zpF(a,b, c; z)

)– = zp

( – z)μ+p
(μ > –p),

and the following linear operator

Iμ,p(a,b, c)f (z) =
(
zpF(a,b, c; z)

)– ∗ f (z), (.)

where a, b, c are real or complex numbers other than ,–,–, . . . , μ > –p, z ∈ E and
f (z) ∈ Ap. This operator was recently introduced in []. In particular, for p = , this op-
erator is studied by Noor []. For b = , this operator reduces to the well-known Cho-
Kwon-Srivastava operator Iμ,p(a, c), which was studied by Cho et al. [], and for μ = ,
b = c, a = n + p, see []. For a = n + p, b = c = , this operator was investigated by Liu []
and Liu and Noor [].
Simple computations yield

Iμ,p(a,b, c)f (z) = zp +
∞∑

n=p+

(c)n(μ + p)n
(a)n(b)n

anzn.

From (.), we note that

Iμ,(a,b, c)f (z) = Iμ(a,b, c)f (z) (see []),

I,p(a,p,a)f (z) = f (z), I,p(a,p,a)f (z) =
zf ′(z)
p

.

Also, it can be easily seen that

z
(
Iμ,p(a,b, c)f (z)

)′ = (μ + p)Iμ+,p(a,b, c)f (z) –μIμ,p(a,b, c)f (z), (.)

and

z
(
Iμ,p(a + ,b, c)f (z)

)′ = aIμ,p(a,b, c)f (z) – (a – p)Iμ,p(a,b, c)f (z).

We define the following class of multivalent analytic functions by using the operator
Iμ,p(a,b, c)f (z) above.

Definition . Let f ∈ Ap for p ∈ N. Then f ∈ UBα
μ,p(a,b, c;γ ,k, δ) for a,b, c ∈ R\Z–

 ,
μ > –p, α > , k ≥ ,  ≤ δ <  and γ >  if and only if

( – γ )
(
Iμ,p(a,b, c)f (z)
Iμ,p(a,b, c)g(z)

)α

+ γ
Iμ+,p(a,b, c)f (z)
Iμ+,p(a,b, c)g(z)

(
Iμ,p(a,b, c)f (z)
Iμ,p(a,b, c)g(z)

)α–

≺ qk,δ(z), (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/458
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where g ∈ Ap is such that

q(z) =
Iμ+,p(a,b, c)g(z)
Iμ,p(a,b, c)g(z)

∈ P(ρ), ρ =
k + δ

k + 
, z ∈ E. (.)

Furthermore, for different choices of parameters being involved, we obtain many other
well-known subclasses of the class Ap and A as special cases.

(i) a = c, b = , k = , μ =m ∈ N, we have Bα
m,p(γ , δ) studied in [].

(ii) a = c = b = p = γ = , k = μ = , g(z) = z, the class UBα
μ,p(a,b, c;γ ,k, δ) reduces to the

class

Bα(δ) =
{
f ∈ A() :

zf ′(z)
f (z)

(
f (z)
z

)α

∈ P(δ)
}

studied in [].
(iii) a = c = b = p = γ = , k = μ = , g(z) = z, the UBα

μ,p(a,b, c;γ ,k, δ) reduces to B(α) is
the class of Bazilevich functions investigated by Singh [].

(iv) a = c = b = p = α = , γ = , k = μ = , g(z) = z, the class UBα
μ,p(a,b, c;γ ,k, δ) reduces

to the class

Bδ =
{
f ∈ A() :

f (z)
z

∈ P(δ)
}
,

the class studied by Chen [].

Let f ∈ Ap· and Fη,p : Ap·→Ap· be defined by

Fη,p(z) =
(η + p)
zη

∫ z


tη–f (t)dt, η > –p. (.)

We need the following lemmas which will be used in our main results.

Lemma . [] Let u = u + iu and v = v + iv, and let ψ : D ⊂ C
 → C be a complex-

valued function satisfying the conditions:
(i) ψ(u, v) is continuous in a domain D⊂C

,
(ii) (, ) ∈D and ψ(, ) > ,
(iii) Reψ(iu, v)≤ , whenever (iu, v) ∈D and v ≤ – 

 ( + u).
If h(z) = + cz+ cz + · · · is analytic in E such that (h, zh′) ∈D and Reψ(h(z), zh′(z)) > 

for z ∈ E, then Reh(z) > .

Lemma . [] Let h be convex in the unit disc E, and let A ≥ . Suppose that B(z) is
analytic in E with ReB(z) ≥ A. If g is analytic in E and g() = h(). Then

Azg ′′(z) + B(z)zg ′(z) + g(z) ≺ h(z) implies that g(z) ≺ h(z).

Lemma . [] Let F be analytic and convex in E. If f , g ∈ Ap and f , g ≺ F . Then

σ f + ( – σ )g ≺ F ,  ≤ σ ≤ .

http://www.journalofinequalitiesandapplications.com/content/2013/1/458
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Lemma . [] Let h be convex in E with h() = a and β ∈ C such that Reβ ≥ . If p ∈
H[a,n] and

p(z) +
zp′(z)

β
≺ h(z),

then p(z) ≺ q(z) ≺ h(z), where

q(z) =
β

nzβ/n

∫ z


h(t)tβ/n– dt

and q(z) is the best dominant.

2 Main results
Theorem . Let f ∈ UBα

μ,p(a,b, c;γ ,k, δ) for a,b, c ∈ R\Z–
 , μ > –p, p ∈ N, α > , k ≥ ,

 ≤ δ <  and γ > . Then f ∈UBα
μ,p(a,b, c; ,k, δ).

Proof Consider

h(z) =
(
Iμ,p(a,b, c)f (z)
Iμ,p(a,b, c)g(z)

)α

, (.)

where h is analytic in E with h() = , and g ∈ Ap satisfies condition (.). Differentiating
(.) logarithmically and using (.), we have

zh′(z)
h(z)

= α(μ + p)
{(

Iμ+,p(a,b, c)f (z)
Iμ,p(a,b, c)f (z)

–
Iμ+,p(a,b, c)g(z)
Iμ,p(a,b, c)g(z)

)}
.

Using (.) and simplifying, we obtain

h(z) +
γ zh′(z)

α(μ + p)q(z)
= ( – γ )

(
Iμ,p(a,b, c)f (z)
Iμ,p(a,b, c)g(z)

)α

+ γ
Iμ+,p(a,b, c)f (z)
Iμ+,p(a,b, c)g(z)

(
Iμ,p(a,b, c)f (z)
Iμ,p(a,b, c)g(z)

)α–

.

Since f ∈UBα
μ,p(a,b, c;γ ,k, δ), therefore, we can write

h(z) +
γ zh′(z)

α(μ + p)q(z)
≺ qk,δ(z), z ∈ E.

Now using Lemma . for A =  and B(z) = γ

α(μ+p)q(z) with Req(z) > , we have ReB(z) ≥ ,
therefore, h(z) ≺ qk,δ(z). Hence f ∈UBα

μ,p(a,b, c; ,k, δ). �

Theorem . Let f ∈ UBα
μ,p(a,b, c;γ , , δ) for a,b, c ∈ R\Z–

 , μ > –p, p ∈ N. Then f ∈
UBα

μ,p(a,b, c; , , δ), where

δ =
αδ(p +μ)|q(z)| + γρ

α(p +μ)|q(z)| + γρ
.

http://www.journalofinequalitiesandapplications.com/content/2013/1/458
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Proof Consider

h(z) =


( – δ)

{(
Iμ,p(a,b, c)f (z)
Iμ,p(a,b, c)g(z)

)α

– δ

}
, (.)

where h is analytic in E with h() = , and g ∈ Ap satisfies condition (.). Differentiating
(.), we have

( – δ)
α

h′(z) =
(
Iμ,p(a,b, c)f (z)
Iμ,p(a,b, c)g(z)

)α–

×
{
(Iμ,p(a,b, c)f (z))′

Iμ,p(a,b, c)g(z)
–
Iμ,p(a,b, c)f (z)
Iμ,p(a,b, c)g(z)

(Iμ,p(a,b, c)g(z))′

Iμ,p(a,b, c)g(z)

}
.

Using (.) and simplifying, we obtain

( – γ )
(
Iμ,p(a,b, c)f (z)
Iμ,p(a,b, c)g(z)

)α

+ γ
Iμ+,p(a,b, c)f (z)
Iμ+,p(a,b, c)g(z)

(
Iμ,p(a,b, c)f (z)
Iμ,p(a,b, c)g(z)

)α–

= ( – δ)h(z) + δ +
γ ( – δ)zh′(z)
α(p +μ)q(z)

.

Since f ∈UBα
μ,p(a,b, c;γ , , δ), therefore we have

( – δ)h(z) + δ +
γ ( – δ)zh′(z)
α(p +μ)q(z)

≺  + ( – δ)z
 – z

,  ≤ δ < , z ∈ E.

This implies that


 – δ

{
( – δ)h(z) + δ – δ +

γ ( – δ)zh′(z)
α(p +μ)q(z)

}
∈ q,(E) = P.

To obtain our desired result, we show that h ∈ P, for z ∈ E. Let u = u + iu, v = v + iv,
and let � :D⊂C

 →C be a complex-valued function such that u = h(z), v = zh′(z). Then

�(u, v) = ( – δ)u + δ – δ +
γ ( – δ)v

α(p +μ)q(z)
.

The first two conditions of Lemma . are easily verified. To verify the third condition, we
consider

Re�(iu, v)

= Re

{
( – δ)iu + δ – δ +

γ ( – δ)v
α(p +μ)q(z)

}

= δ – δ +Re
γ ( – δ)v

α(p +μ)q(z)

≤ δ – δ –Re
γ ( – δ)( + u)q(z)
α(p +μ)|q(z)|

≤ δ – δ –
γ ( – δ)( + u)ρ
α(p +μ)|q(z)| =

A + Bu

C
,

http://www.journalofinequalitiesandapplications.com/content/2013/1/458
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where A = α(p + μ)(δ – δ)|q(z)| – γρ( – δ), B = –γρ( – δ) ≤  if  ≤ δ <  and
C = α(p + μ)|q(z)| > . From the relation δ = αδ(p+μ)|q(z)|+γρ

α(p+μ)|q(z)|+γρ
, we have A ≤ . This im-

plies that Re�(iu, v) ≤ . Using Lemma ., we have h ∈ P for z ∈ E. This completes the
proof. �

Theorem . Let a,b, c ∈R\Z–
 , μ > –p, p ∈N, α > , k ≥  and  ≤ δ < . Then

UBα
μ,p(a,b, c;γ,k, δ) ⊂UBα

μ,p(a,b, c;γ,k, δ),  ≤ γ < γ, z ∈ E.

Proof Since f ∈UBα
μ,p(a,b, c;γ,k, δ), therefore, we have

( – γ)
(
Iμ,p(a,b, c)f (z)
Iμ,p(a,b, c)g(z)

)α

+ γ
Iμ+,p(a,b, c)f (z)
Iμ+,p(a,b, c)g(z)

(
Iμ,p(a,b, c)f (z)
Iμ,p(a,b, c)g(z)

)α–

= h(z) ≺ qk,δ(z), (.)

where g ∈ Ap satisfies condition (.). From Theorem ., we write

(
Iμ,p(a,b, c)f (z)
Iμ,p(a,b, c)g(z)

)α

= h(z) ≺ qk,δ(z), z ∈ E. (.)

Now, for γ ≥ , we obtain

( – γ)
(
Iμ,p(a,b, c)f (z)
Iμ,p(a,b, c)g(z)

)α

+ γ
Iμ+,p(a,b, c)f (z)
Iμ+,p(a,b, c)g(z)

(
Iμ,p(a,b, c)f (z)
Iμ,p(a,b, c)g(z)

)α–

=
(
 –

γ

γ

)(
Iμ,p(a,b, c)f (z)
Iμ,p(a,b, c)g(z)

)α

+
γ

γ

{
( – γ)

(
Iμ,p(a,b, c)f (z)
Iμ,p(a,b, c)g(z)

)α

+ γ
Iμ+,p(a,b, c)f (z)
Iμ+,p(a,b, c)g(z)

(
Iμ,p(a,b, c)f (z)
Iμ,p(a,b, c)g(z)

)α–}

=
γ

γ
h(z) +

(
 –

γ

γ

)
h(z).

Using the convexity of the class of the function qk,δ(z) and Lemma ., we write

γ

γ
h(z) +

(
 –

γ

γ

)
h(z) ≺ qk,δ(z), z ∈ E,

where h and h are given by (.) and (.), respectively. This implies that f ∈UBα
μ,p(a,b, c;

γ,k, δ). Hence the proof of the theorem is completed. �

Theorem. Let f ∈UB
μ,p(a,b, c;γ ,k, δ), a,b, c ∈R\Z–

 ,μ > –p, p ∈N, α > , k ≥ , γ ≥ 
and  ≤ δ < . Then f ∈UB

μ+,p(a,b, c; ,k, δ).

Proof Since f ∈UB
μ,p(a,b, c;γ ,k, δ), therefore, we have

( – γ )
(
Iμ,p(a,b, c)f (z)
Iμ,p(a,b, c)g(z)

)
+ γ

Iμ+,p(a,b, c)f (z)
Iμ+,p(a,b, c)g(z)

≺ qk,δ(z).

http://www.journalofinequalitiesandapplications.com/content/2013/1/458
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Now, consider

γ
Iμ+,p(a,b, c)f (z)
Iμ+,p(a,b, c)g(z)

= ( – γ )
(
Iμ,p(a,b, c)f (z)
Iμ,p(a,b, c)g(z)

)
+ γ

Iμ+,p(a,b, c)f (z)
Iμ+,p(a,b, c)g(z)

+ (γ – )
(
Iμ,p(a,b, c)f (z)
Iμ,p(a,b, c)g(z)

)
.

This implies that

Iμ+,p(a,b, c)f (z)
Iμ+,p(a,b, c)g(z)

=

γ

{
( – γ )

(
Iμ,p(a,b, c)f (z)
Iμ,p(a,b, c)g(z)

)
+ γ

Iμ+,p(a,b, c)f (z)
Iμ+,p(a,b, c)g(z)

}

+
(
 –


γ

)(
Iμ,p(a,b, c)f (z)
Iμ,p(a,b, c)g(z)

)
.

Using Theorem ., Lemma . and the convexity of qk,δ(z), we have the required result.
�

Now, using the operators Iμ,p(a,b, c) and Fη,p defined by (.) and (.), respectively, we
have

z
(
Iμp (a,b, c)Fη,p(f )(z)

)′ = (p + η)Iμp (a,b, c)f (z) – ηIμp (a,b, c)Fη,p(f )(z), η > –p. (.)

Theorem . Let f ∈ Ap and Fη,p be given by (.). If

( – γ )
Iμ,p(a,b, c)Fη,p(f )(z)

zp
+ γ

Iμ,p(a,b, c)(f (z))
zp

≺ qk,δ(z), z ∈ E, (.)

with a,b, c ∈R\Z–
 , μ,η > –p, p ∈N, γ > , then

Iμ,p(a,b, c)Fη,p(f (z))
zp

≺ h(z) ≺ qk,δ(z), z ∈ E,

where

h(z) =
p + η

γ z(p+η)/γ

∫ z


qk,δ(z)t

(p+η)/γ – dt.

Proof Let

Iμ,p(a,b, c)Fη,p(f (z))
zp

= h(z), z ∈ E,

where h is analytic in E with h() = . Then

z
(
Iμ,p(a,b, c)Fη,p

(
f (z)

))′ = pzph(z) + zp+h′
(z).

Using (.), we have

γ (p + η)
Iμ,p(a,b, c)f (z)

zp
– γ η

Iμ,p(a,b, c)Fη,p(f )(z)
zp

= pγ h(z) + γ zh′
(z).

http://www.journalofinequalitiesandapplications.com/content/2013/1/458
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Thus,

( – γ )
Iμ,p(a,b, c)Fη,p(f (z))

zp
+ γ

Iμ,p(a,b, c)(f (z))
zp

= h(z) + γ
zh′

(z)
p + η

. (.)

From (.), it follows that

h(z) + γ
zh′

(z)
p + η

≺ qk,δ(z), z ∈ E.

Using Lemma ., for β = p+η

γ
, n =  and a = , we obtain h(z) ≺ h(z) ≺ qk,δ(z). That is,

Iμ,p(a,b,c)Fη,p(f (z))
zp ≺ qk,δ(z). �

Theorem . Let f ∈ UBα
μ,p(a,b, c; , , δ) for a,b, c ∈ R\Z–

 , μ > –p, p ∈ N, α,γ > ,
≤ δ < . Then f ∈ UBα

μ,p(a,b, c;γ , , δ), for |z| < r, where

r =
α(p
+

μ) + γ –
√

γ  + αγ (p +μ)α(p +μ). (.)

Proof Let f ∈ UBα
μ,p(a,b, c; , , δ). Then we have

(
Iμ,p(a,b, c)f (z)
Iμ,p(a,b, c)g(z)

)α

= ( – δ)h(z) + δ, (.)

where g ∈ Ap satisfies the condition

q(z) =
Iμ+,p(a,b, c)g(z)
Iμ,p(a,b, c)g(z)

∈ P, z ∈ E

and h ∈ P. Differentiating (.) and then using (.), we obtain

γ
Iμ+,p(a,b, c)f (z)
Iμ+,p(a,b, c)g(z)

(
Iμ,p(a,b, c)f (z)
Iμ,p(a,b, c)g(z)

)α–

– γ

(
Iμ,p(a,b, c)f (z)
Iμ,p(a,b, c)g(z)

)α

=
γ (p – δ)zh′(z)
α(p +μ)q(z)

.

This implies that


 – δ

{
( – γ )

(
Iμ,p(a,b, c)f (z)
Iμ,p(a,b, c)g(z)

)α

+ γ
Iμ+,p(a,b, c)f (z)
Iμ+,p(a,b, c)g(z)

(
Iμ,p(a,b, c)f (z)
Iμ,p(a,b, c)g(z)

)α–

– δ

}

= h(z) +
γ zh′(z)

α(p +μ)q(z)
, z ∈ E. (.)

Now, using the well-known distortion result for class P, we have

∣∣zh′(z)
∣∣ ≤ rReh(z)

 – r
and Reh(z) ≥  – r

 + r
, |z| < r < , z ∈ E.
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Thus, due to the applications of these inequalities, we have

Re

(
h(z) +

γ zh′(z)
α(p +μ)q(z)

)
≥ Reh(z) –

γ |zh′(z)|
α(p +μ)|q(z)|

≥ Reh(z)
(
 –

γ r
α(p +μ)( – r)

)

= Reh(z)
(

α(p +μ)( – r) – γ r
α(p +μ)( – r)

)
.

For |z| < r, where r is given in (.), the inequality above is positive. Sharpness of the
result follows by taking h(z) = +z

–z . Hence from (.), we have the required result. �
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