188 research outputs found

    Room-Temperature Routes Toward the Creation of Zinc Oxide Films from Molecular Precursors

    Get PDF
    The fabrication of “flexible” electronics on plastic substrates with low melting points requires the development of thin-film deposition techniques that operate at low temperatures. This is easily achieved with vacuum- or solution-processed molecular or polymeric semiconductors, but oxide materials remain a significant challenge. Here, we show that zinc oxide (ZnO) can be prepared using only room-temperature processes, with the molecular thin-film precursor zinc phthalocyanine (ZnPc), followed by UV-light treatment in vacuum to elicit degradation of the organic components and transformation of the deposited film to the oxide material. The degradation mechanism was assessed by studying the influence of the atmosphere during the reaction: it was particularly sensitive to the oxygen pressure in the chamber and optimal degradation conditions were established as 3 mbar with 40% oxygen in nitrogen. The morphology of the film remained relatively unchanged during the reaction, but a detailed analysis of its composition using both scanning transmission electron microscopy and secondary ion mass spectrometry revealed that a 40 nm thick layer containing ZnO results from the 100 nm thick precursor after complete reaction. Our methodology represents a simple route for the fabrication of oxides and multilayer structures that can be easily integrated into current molecular thin-film growth setups, without the need for a high-temperature step

    Isolation of two insecticidal toxins from venom of the Australian theraphosid spider Coremiocnemis tropix

    Full text link
    © 2016 Elsevier Ltd Sheep flystrike is caused by parasitic flies laying eggs on soiled wool or open wounds, after which the hatched maggots feed on the sheep flesh and often cause large lesions. It is a significant economic problem for the livestock industry as infestations are difficult to control due to ongoing cycles of larval development into flies followed by further egg laying. We therefore screened venom fractions from the Australian theraphosid spider Coremiocnemis tropix to identify toxins active against the sheep blowfly Lucilia cuprina, which is the primary cause of flystrike in Australia. This screen led to isolation of two insecticidal peptides, Ct1a and Ct1b, that are lethal to blowflies within 24 h of injection. The primary structure of these peptides was determined using a combination of Edman degradation and sequencing of a C. tropix venom-gland transcriptome. Ct1a and Ct1b contain 39 and 38 amino acid residues, respectively, including six cysteine residues that form three disulfide bonds. Recombinant production in bacteria (Escherichia coli) resulted in low yields of Ct1a whereas solid-phase peptide synthesis using native chemical ligation produced sufficient quantities of Ct1a for functional analyses. Synthetic Ct1a had no effect on voltage-gated sodium channels from the American cockroach Periplanata americana or the German cockroach Blattella germanica, but it was lethal to sheep blowflies with an LD50 of 1687 pmol/g

    Application of Magnetic Nanoparticles in Pharmaceutical Sciences

    Get PDF
    # The Author(s) 2010. This article is published with open access at Springerlink.com KEY WORDS magnetic beads. magnetic bioseparation. magnetic nanoparticle

    The effectiveness of neuromuscular warm-up strategies, that require no additional equipment, for preventing lower limb injuries during sports participation: a systematic review

    Get PDF
    PMCID: PMC3408383The electronic version of this article is the complete one and can be found online at: http://www.biomedcentral.com/1741-7015/10/75. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

    Factorizations of Elements in Noncommutative Rings: A Survey

    Full text link
    We survey results on factorizations of non zero-divisors into atoms (irreducible elements) in noncommutative rings. The point of view in this survey is motivated by the commutative theory of non-unique factorizations. Topics covered include unique factorization up to order and similarity, 2-firs, and modular LCM domains, as well as UFRs and UFDs in the sense of Chatters and Jordan and generalizations thereof. We recall arithmetical invariants for the study of non-unique factorizations, and give transfer results for arithmetical invariants in matrix rings, rings of triangular matrices, and classical maximal orders as well as classical hereditary orders in central simple algebras over global fields.Comment: 50 pages, comments welcom

    SDF1-Induced Antagonism of Axonal Repulsion Requires Multiple G-Protein Coupled Signaling Components That Work in Parallel

    Get PDF
    SDF1 reduces the responsiveness of axonal growth cones to repellent guidance cues in a pertussis-toxin-sensitive, cAMP-dependent manner. Here, we show that SDF1's antirepellent effect can be blocked in embryonic chick dorsal root ganglia (DRGs) by expression of peptides or proteins inhibiting either Gαi, Gαq, or Gβγ. SDF1 antirepellent activity is also blocked by pharmacological inhibition of PLC, a common effector protein for Gαq. We also show that SDF1 antirepellent activity can be mimicked by overexpression of constitutively active Gαi, Gαq, or Gαs. These results suggest a model in which multiple G protein components cooperate to produce the cAMP levels required for SDF1 antirepellent activity

    Identifying New Therapeutic Targets via Modulation of Protein Corona Formation by Engineered Nanoparticles

    Get PDF
    We introduce a promising methodology to identify new therapeutic targets in cancer. Proteins bind to nanoparticles to form a protein corona. We modulate this corona by using surface-engineered nanoparticles, and identify protein composition to provide insight into disease development.Using a family of structurally homologous nanoparticles we have investigated the changes in the protein corona around surface-functionalized gold nanoparticles (AuNPs) from normal and malignant ovarian cell lysates. Proteomics analysis using mass spectrometry identified hepatoma-derived growth factor (HDGF) that is found exclusively on positively charged AuNPs ((+)AuNPs) after incubation with the lysates. We confirmed expression of HDGF in various ovarian cancer cells and validated binding selectivity to (+)AuNPs by Western blot analysis. Silencing of HDGF by siRNA resulted s inhibition in proliferation of ovarian cancer cells.We investigated the modulation of protein corona around surface-functionalized gold nanoparticles as a promising approach to identify new therapeutic targets. The potential of our method for identifying therapeutic targets was demonstrated through silencing of HDGF by siRNA, which inhibited proliferation of ovarian cancer cells. This integrated proteomics, bioinformatics, and nanotechnology strategy demonstrates that protein corona identification can be used to discover novel therapeutic targets in cancer

    Intramolecular Cohesion of Coils Mediated by Phenylalanine–Glycine Motifs in the Natively Unfolded Domain of a Nucleoporin

    Get PDF
    The nuclear pore complex (NPC) provides the sole aqueous conduit for macromolecular exchange between the nucleus and the cytoplasm of cells. Its diffusion conduit contains a size-selective gate formed by a family of NPC proteins that feature large, natively unfolded domains with phenylalanine–glycine repeats (FG domains). These domains of nucleoporins play key roles in establishing the NPC permeability barrier, but little is known about their dynamic structure. Here we used molecular modeling and biophysical techniques to characterize the dynamic ensemble of structures of a representative FG domain from the yeast nucleoporin Nup116. The results showed that its FG motifs function as intramolecular cohesion elements that impart order to the FG domain and compact its ensemble of structures into native premolten globular configurations. At the NPC, the FG motifs of nucleoporins may exert this cohesive effect intermolecularly as well as intramolecularly to form a malleable yet cohesive quaternary structure composed of highly flexible polypeptide chains. Dynamic shifts in the equilibrium or competition between intra- and intermolecular FG motif interactions could facilitate the rapid and reversible structural transitions at the NPC conduit needed to accommodate passing karyopherin–cargo complexes of various shapes and sizes while simultaneously maintaining a size-selective gate against protein diffusion

    Analysis and Prediction of Translation Rate Based on Sequence and Functional Features of the mRNA

    Get PDF
    Protein concentrations depend not only on the mRNA level, but also on the translation rate and the degradation rate. Prediction of mRNA's translation rate would provide valuable information for in-depth understanding of the translation mechanism and dynamic proteome. In this study, we developed a new computational model to predict the translation rate, featured by (1) integrating various sequence-derived and functional features, (2) applying the maximum relevance & minimum redundancy method and incremental feature selection to select features to optimize the prediction model, and (3) being able to predict the translation rate of RNA into high or low translation rate category. The prediction accuracies under rich and starvation condition were 68.8% and 70.0%, respectively, evaluated by jackknife cross-validation. It was found that the following features were correlated with translation rate: codon usage frequency, some gene ontology enrichment scores, number of RNA binding proteins known to bind its mRNA product, coding sequence length, protein abundance and 5′UTR free energy. These findings might provide useful information for understanding the mechanisms of translation and dynamic proteome. Our translation rate prediction model might become a high throughput tool for annotating the translation rate of mRNAs in large-scale
    corecore