Abstract

SDF1 reduces the responsiveness of axonal growth cones to repellent guidance cues in a pertussis-toxin-sensitive, cAMP-dependent manner. Here, we show that SDF1's antirepellent effect can be blocked in embryonic chick dorsal root ganglia (DRGs) by expression of peptides or proteins inhibiting either Gαi, Gαq, or Gβγ. SDF1 antirepellent activity is also blocked by pharmacological inhibition of PLC, a common effector protein for Gαq. We also show that SDF1 antirepellent activity can be mimicked by overexpression of constitutively active Gαi, Gαq, or Gαs. These results suggest a model in which multiple G protein components cooperate to produce the cAMP levels required for SDF1 antirepellent activity

    Similar works