1,808 research outputs found

    Unproven medical devices and cancer therapy: big claims but no evidence

    Get PDF

    Identification of side effects of COVID-19 drug candidates on embryogenesis using an integrated zebrafish screening platform

    Get PDF
    Drug repurposing is an important strategy in COVID-19 treatment, but many clinically approved compounds have not been extensively studied in the context of embryogenesis, thus limiting their administration during pregnancy. Here we used the zebrafish embryo model organism to test the effects of 162 marketed drugs on cardiovascular development. Among the compounds used in the clinic for COVD-19 treatment, we found that Remdesivir led to reduced body size and heart functionality at clinically relevant doses. Ritonavir and Baricitinib showed reduced heart functionality and Molnupiravir and Baricitinib showed effects on embryo activity. Sabizabulin was highly toxic at concentrations only 5 times higher than Cmax and led to a mean mortality of 20% at Cmax. Furthermore, we tested if zebrafish could be used as a model to study inflammatory response in response to spike protein treatment and found that Remdesivir, Ritonavir, Molnupiravir, Baricitinib as well as Sabizabulin counteracted the inflammatory response related gene expression upon SARS-CoV-2 spike protein treatment. Our results show that the zebrafish allows to study immune-modulating properties of COVID-19 compounds and highlights the need to rule out secondary defects of compound treatment on embryogenesis. All results are available on a user friendly web-interface https://share.streamlit.io/alernst/covasc_dataapp/main/CoVasc_DataApp.py that provides a comprehensive overview of all observed phenotypic effects and allows personalized search on specific compounds or group of compounds. Furthermore, the presented platform can be expanded for rapid detection of developmental side effects of new compounds for treatment of COVID-19 and further viral infectious diseases.This work was funded by the Swiss National Science Foundation NRP78 4078P0_198297 to Nadia Mercader and Grant 310030_189136 to Stephen Leib.S

    Predicting cell types and genetic variations contributing to disease by combining GWAS and epigenetic data

    Get PDF
    Genome-wide association studies (GWASs) identify single nucleotide polymorphisms (SNPs) that are enriched in individuals suffering from a given disease. Most disease-associated SNPs fall into non-coding regions, so that it is not straightforward to infer phenotype or function; moreover, many SNPs are in tight genetic linkage, so that a SNP identified as associated with a particular disease may not itself be causal, but rather signify the presence of a linked SNP that is functionally relevant to disease pathogenesis. Here, we present an analysis method that takes advantage of the recent rapid accumulation of epigenomics data to address these problems for some SNPs. Using asthma as a prototypic example; we show that non-coding disease-associated SNPs are enriched in genomic regions that function as regulators of transcription, such as enhancers and promoters. Identifying enhancers based on the presence of the histone modification marks such as H3K4me1 in different cell types, we show that the location of enhancers is highly cell-type specific. We use these findings to predict which SNPs are likely to be directly contributing to disease based on their presence in regulatory regions, and in which cell types their effect is expected to be detectable. Moreover, we can also predict which cell types contribute to a disease based on overlap of the disease-associated SNPs with the locations of enhancers present in a given cell type. Finally, we suggest that it will be possible to re-analyze GWAS studies with much higher power by limiting the SNPs considered to those in coding or regulatory regions of cell types relevant to a given disease

    Expression of Nestin by Neural Cells in the Adult Rat and Human Brain

    Get PDF
    Neurons and glial cells in the developing brain arise from neural progenitor cells (NPCs). Nestin, an intermediate filament protein, is thought to be expressed exclusively by NPCs in the normal brain, and is replaced by the expression of proteins specific for neurons or glia in differentiated cells. Nestin expressing NPCs are found in the adult brain in the subventricular zone (SVZ) of the lateral ventricle and the subgranular zone (SGZ) of the dentate gyrus. While significant attention has been paid to studying NPCs in the SVZ and SGZ in the adult brain, relatively little attention has been paid to determining whether nestin-expressing neural cells (NECs) exist outside of the SVZ and SGZ. We therefore stained sections immunocytochemically from the adult rat and human brain for NECs, observed four distinct classes of these cells, and present here the first comprehensive report on these cells. Class I cells are among the smallest neural cells in the brain and are widely distributed. Class II cells are located in the walls of the aqueduct and third ventricle. Class IV cells are found throughout the forebrain and typically reside immediately adjacent to a neuron. Class III cells are observed only in the basal forebrain and closely related areas such as the hippocampus and corpus striatum. Class III cells resemble neurons structurally and co-express markers associated exclusively with neurons. Cell proliferation experiments demonstrate that Class III cells are not recently born. Instead, these cells appear to be mature neurons in the adult brain that express nestin. Neurons that express nestin are not supposed to exist in the brain at any stage of development. That these unique neurons are found only in brain regions involved in higher order cognitive function suggests that they may be remodeling their cytoskeleton in supporting the neural plasticity required for these functions

    Functional Interactions between KCNE1 C-Terminus and the KCNQ1 Channel

    Get PDF
    The KCNE1 gene product (minK protein) associates with the cardiac KvLQT1 potassium channel (encoded by KCNQ1) to create the cardiac slowly activating delayed rectifier, IKs. Mutations throughout both genes are linked to the hereditary cardiac arrhythmias in the Long QT Syndrome (LQTS). KCNE1 exerts its specific regulation of KCNQ1 activation via interactions between membrane-spanning segments of the two proteins. Less detailed attention has been focused on the role of the KCNE1 C-terminus in regulating channel behavior. We analyzed the effects of an LQT5 point mutation (D76N) and the truncation of the entire C-terminus (Δ70) on channel regulation, assembly and interaction. Both mutations significantly shifted voltage dependence of activation in the depolarizing direction and decreased IKs current density. They also accelerated rates of channel deactivation but notably, did not affect activation kinetics. Truncation of the C-terminus reduced the apparent affinity of KCNE1 for KCNQ1, resulting in impaired channel formation and presentation of KCNQ1/KCNE1 complexes to the surface. Complete saturation of KCNQ1 channels with KCNE1-Δ70 could be achieved by relative over-expression of the KCNE subunit. Rate-dependent facilitation of K+ conductance, a key property of IKs that enables action potential shortening at higher heart rates, was defective for both KCNE1 C-terminal mutations, and may contribute to the clinical phenotype of arrhythmias triggered by heart rate elevations during exercise in LQTS mutations. These results support several roles for KCNE1 C-terminus interaction with KCNQ1: regulation of channel assembly, open-state destabilization, and kinetics of channel deactivation

    Your Resting Brain CAREs about Your Risky Behavior

    Get PDF
    Research on the neural correlates of risk-related behaviors and personality traits has provided insight into mechanisms underlying both normal and pathological decision-making. Task-based neuroimaging studies implicate a distributed network of brain regions in risky decision-making. What remains to be understood are the interactions between these regions and their relation to individual differences in personality variables associated with real-world risk-taking.We employed resting state functional magnetic resonance imaging (R-fMRI) and resting state functional connectivity (RSFC) methods to investigate differences in the brain's intrinsic functional architecture associated with beliefs about the consequences of risky behavior. We obtained an individual measure of expected benefit from engaging in risky behavior, indicating a risk seeking or risk-averse personality, for each of 21 participants from whom we also collected a series of R-fMRI scans. The expected benefit scores were entered in statistical models assessing the RSFC of brain regions consistently implicated in both the evaluation of risk and reward, and cognitive control (i.e., orbitofrontal cortex, nucleus accumbens, lateral prefrontal cortex, dorsal anterior cingulate). We specifically focused on significant brain-behavior relationships that were stable across R-fMRI scans collected one year apart. Two stable expected benefit-RSFC relationships were observed: decreased expected benefit (increased risk-aversion) was associated with 1) stronger positive functional connectivity between right inferior frontal gyrus (IFG) and right insula, and 2) weaker negative functional connectivity between left nucleus accumbens and right parieto-occipital cortex.Task-based activation in the IFG and insula has been associated with risk-aversion, while activation in the nucleus accumbens and parietal cortex has been associated with both risk seeking and risk-averse tendencies. Our results suggest that individual differences in attitudes toward risk-taking are reflected in the brain's functional architecture and may have implications for engaging in real-world risky behaviors

    Large Scale Comparison of Innate Responses to Viral and Bacterial Pathogens in Mouse and Macaque

    Get PDF
    Viral and bacterial infections of the lower respiratory tract are major causes of morbidity and mortality worldwide. Alveolar macrophages line the alveolar spaces and are the first cells of the immune system to respond to invading pathogens. To determine the similarities and differences between the responses of mice and macaques to invading pathogens we profiled alveolar macrophages from these species following infection with two viral (PR8 and Fuj/02 influenza A) and two bacterial (Mycobacterium tuberculosis and Francisella tularensis Schu S4) pathogens. Cells were collected at 6 time points following each infection and expression profiles were compared across and between species. Our analyses identified a core set of genes, activated in both species and across all pathogens that were predominantly part of the interferon response pathway. In addition, we identified similarities across species in the way innate immune cells respond to lethal versus non-lethal pathogens. On the other hand we also found several species and pathogen specific response patterns. These results provide new insights into mechanisms by which the innate immune system responds to, and interacts with, invading pathogens

    Reduced NAA-Levels in the NAWM of Patients with MS Is a Feature of Progression. A Study with Quantitative Magnetic Resonance Spectroscopy at 3 Tesla

    Get PDF
    Reduced N-acetyl-aspartate (NAA) levels in magnetic resonance spectroscopy (MRS) may visualize axonal damage even in the normal appearing white matter (NAWM). Demyelination and axonal degeneration are a hallmark in multiple sclerosis (MS).To define the extent of axonal degeneration in the NAWM in the remote from focal lesions in patients with relapsing-remitting (RRMS) and secondary progressive MS (SPMS).H-MR-chemical shift imaging (TR = 1500ms, TE = 135ms, nominal resolution 1ccm) operating at 3Tesla to assess the metabolic pattern in the fronto–parietal NAWM. Ratios of NAA to creatine (Cr) and choline (Cho) and absolute concentrations of the metabolites in the NAWM were measured in each voxel matching exclusively white matter on the anatomical T2 weighted MR images.No significant difference of absolute concentrations for NAA, Cr and Cho or metabolite ratios were found between RRMS and controls. In SPMS, the NAA/Cr ratio and absolute concentrations for NAA and Cr were significantly reduced compared to RRMS and to controls.In our study SPMS patients, but not RRMS patients were characterized by low NAA levels. Reduced NAA-levels in the NAWM of patients with MS is a feature of progression

    Lattice Boltzmann simulations of soft matter systems

    Full text link
    This article concerns numerical simulations of the dynamics of particles immersed in a continuum solvent. As prototypical systems, we consider colloidal dispersions of spherical particles and solutions of uncharged polymers. After a brief explanation of the concept of hydrodynamic interactions, we give a general overview over the various simulation methods that have been developed to cope with the resulting computational problems. We then focus on the approach we have developed, which couples a system of particles to a lattice Boltzmann model representing the solvent degrees of freedom. The standard D3Q19 lattice Boltzmann model is derived and explained in depth, followed by a detailed discussion of complementary methods for the coupling of solvent and solute. Colloidal dispersions are best described in terms of extended particles with appropriate boundary conditions at the surfaces, while particles with internal degrees of freedom are easier to simulate as an arrangement of mass points with frictional coupling to the solvent. In both cases, particular care has been taken to simulate thermal fluctuations in a consistent way. The usefulness of this methodology is illustrated by studies from our own research, where the dynamics of colloidal and polymeric systems has been investigated in both equilibrium and nonequilibrium situations.Comment: Review article, submitted to Advances in Polymer Science. 16 figures, 76 page

    Correction to: Compartments in medulloblastoma with extensive nodularity are connected through differentiation along the granular precursor lineage (Nature Communications, (2024), 15, 1, (269), 10.1038/s41467-023-44117-x)

    Get PDF
    \ua9 The Author(s) 2024.Correction to: Nature Communications https://doi.org/10.1038/s41467-023-44117-x, published online 08 January 2024 In the Acknowledgements section, the following sentence ‘The development of spatial transcriptomics protocol was supported by the START-HD project within the HMLS Explorer program of the University of Heidelberg’ should have read ‘The development of spatial transcriptomics protocols was supported by the Baden- W\ufcrttemberg Stiftung (project MET-ID41-STARFISH) and by the HMLS Explorer program of the University of Heidelberg (project START-HD). The original article has been corrected
    • …
    corecore