2,226 research outputs found
Physiological response and performance of tambaqui fed with diets supplemented with Amazonian nut
The present study evaluated the effectiveness of Amazonian nut (Bertholletia excelsa) as an alternative source of vegetal protein in tambaqui (Colossoma macropomum) diet. Performance and physiological status of fish fed for 60 days were evaluated. Four experimental isonitrogenous diets with 36% crude protein were formulated with increasing levels of nut meal (0, 10, 20 and 30%). Results showed the same growth performance for fish fed with diet with different levels of Amazonian nut than that without this ingredient (control). Analysis of physiological parameters (hematocrit, erythrocyte number, hemoglobin concentration, hematimetric indexes, total plasma protein and plasma glucose) corroborate these results, with no significant differences among treatments. Therefore, adding up to 30% of Amazonian nut in tambaqui diet there is no negative effect on physiological homeostasis and growth performance, indicating that the Amazonian nut is a promising alternative dietary protein source ingredient for tambaqui
A Factorization Law for Entanglement Decay
We present a simple and general factorization law for quantum systems shared
by two parties, which describes the time evolution of entanglement upon passage
of either component through an arbitrary noisy channel. The robustness of
entanglement-based quantum information processing protocols is thus easily and
fully characterized by a single quantity.Comment: 4 pages, 5 figure
MAPPING DECIDUOUS FORESTS BY USING TIME SERIES OF FILTERED MODIS NDVI AND NEURAL NETWORKS
Multi-temporal images are now of standard use in remote sensing of vegetation during monitoring and classification. Temporal vegetation signatures (i. e., vegetation indices as functions of time) generated, poses many challenges, primarily due to signal to noise-related issues. This study investigates which methods generate the most appropriate smoothed curves of vegetation signatures on MODIS NDVI time series. The filtering techniques compared were the HANTS algorithm which is based on Fourier analyses and Wavelet temporal algorithm which uses the wavelet analysis to generate the smoothed curves. The study was conducted in four different regions of the Minas Gerais State. The smoothed data were used as input data vectors for vegetation classification by means of artificial neural networks for comparison purpose. A comparison of the results was ultimately discussed in this work showing encouraging results and similarity between the two filtering techniques used.16212313
The course of specialization in public health in Rio de Janeiro, Brazil, from 1926 to 2006: lessons and challenges
<p>Abstract</p> <p>Background</p> <p>Public health, as a field of knowledge, depends on its professionals. Their education and training, therefore, is considered to be an important factor for the quality of health services. In Brazil, the Course of Specialization in Public Health of the National School of Public Health is one of the oldest in the country. The course has existed for over 80 years, during which it has had an eventful history, with modifications in its organization, interruptions in its delivery, threats to its survival and changes in the institutions hosting it, reflecting the wider transformation in Brazilian society and public life over that period.</p> <p>Methods</p> <p>In this article we analyse this course via its history, disciplines, organization and characteristics of the student body.</p> <p>Results</p> <p>Insights were gained into the advancement of public health in Brazil and the progress of education for professionals in this field was highlighted. The course has formed nearly 2000 specialists in public health.</p> <p>Conclusions</p> <p>An analysis of the course's history provides valuable lessons for other schools of public health trying to train professionals in developing countries.</p
Correction: optimized labeling of bone marrow mesenchymal cells with superparamagnetic iron oxide nanoparticles and in vivo visualization by magnetic resonance imaging
Abstract Background Stem cell therapy has emerged as a promising addition to traditional treatments for a number of diseases. However, harnessing the therapeutic potential of stem cells requires an understanding of their fate in vivo. Non-invasive cell tracking can provide knowledge about mechanisms responsible for functional improvement of host tissue. Superparamagnetic iron oxide nanoparticles (SPIONs) have been used to label and visualize various cell types with magnetic resonance imaging (MRI). In this study we performed experiments designed to investigate the biological properties, including proliferation, viability and differentiation capacity of mesenchymal cells (MSCs) labeled with clinically approved SPIONs. Results Rat and mouse MSCs were isolated, cultured, and incubated with dextran-covered SPIONs (ferumoxide) alone or with poly-L-lysine (PLL) or protamine chlorhydrate for 4 or 24 hrs. Labeling efficiency was evaluated by dextran immunocytochemistry and MRI. Cell proliferation and viability were evaluated in vitro with Ki67 immunocytochemistry and live/dead assays. Ferumoxide-labeled MSCs could be induced to differentiate to adipocytes, osteocytes and chondrocytes. We analyzed ferumoxide retention in MSCs with or without mitomycin C pretreatment. Approximately 95% MSCs were labeled when incubated with ferumoxide for 4 or 24 hrs in the presence of PLL or protamine, whereas labeling of MSCs incubated with ferumoxide alone was poor. Proliferative capacity was maintained in MSCs incubated with ferumoxide and PLL for 4 hrs, however, after 24 hrs it was reduced. MSCs incubated with ferumoxide and protamine were efficiently visualized by MRI; they maintained proliferation and viability for up to 7 days and remained competent to differentiate. After 21 days MSCs pretreated with mitomycin C still showed a large number of ferumoxide-labeled cells. Conclusions The efficient and long lasting uptake and retention of SPIONs by MSCs using a protocol employing ferumoxide and protamine may be applicable to patients, since both ferumoxides and protamine are approved for human use.</p
Identification and functional characterization of a novel arginine/ornithine transporter, a member of a cationic amino acid transporter subfamily in the Trypanosoma cruzi genome
Background: Trypanosoma cruzi, the etiological agent of Chagas disease, is auxotrophic for arginine. It obtains this amino acid from the host through transporters expressed on the plasma membrane and on the membranes of intracellular compartments. A few cationic amino acid transporters have been characterized at the molecular level, such as the novel intracellular arginine/ornithine transporter, TcCAT1.1, a member of the TcCAT subfamily that is composed of four almost identical open reading frames in the T. cruzi genome. Methods: The functional characterization of the TcCAT1.1 isoform was performed in two heterologous expression systems. TcCAT subfamily expression was evaluated by real-time PCR in polysomal RNA fractions, and the cellular localization of TcCAT1.1 fused to EGFP was performed by confocal and immunoelectron microscopy. Results: In the S. cerevisiae expression system, TcCAT1.1 showed high affinity for arginine (Km = 0.085 ± 0.04 mM) and low affinity for ornithine (Km = 1.7 ± 0.2 mM). Xenopus laevis oocytes expressing TcCAT1.1 showed a 7-fold increase in arginine uptake when they were pre-loaded with arginine, indicating that transport is enhanced by substrates on the trans side of the membrane (trans-stimulation). Oocytes that were pre-loaded with [3H]-arginine displayed a 16-fold higher efflux of [3H]-arginine compared with that of the control. Analysis of polysomal RNA fractions demonstrated that the expression of members of the arginine transporter TcCAT subfamily is upregulated under nutritional stress and that this upregulation precedes metacyclogenesis. To investigate the cellular localization of the transporter, EGFP was fused to TcCAT1.1, and fluorescence microscopy and immunocytochemistry revealed the intracellular labeling of vesicles in the anterior region, in a network of tubules and vesicles. Conclusions: TcCAT1.1 is a novel arginine/ornithine transporter, an exchanger expressed in intracellular compartments that is physiologically involved in arginine homeostasis throughout the T. cruzi life cycle. The properties and estimated kinetic parameters of TcCAT1.1 can be extended to other members of the TcCAT subfamily
Atividade física na perspectiva da Nova Promoção da Saúde: contradições de um programa institucional
- …