4,546 research outputs found

    On multigraded generalizations of Kirillov-Reshetikhin modules

    Full text link
    We study the category of Z^l-graded modules with finite-dimensional graded pieces for certain Z+^l-graded Lie algebras. We also consider certain Serre subcategories with finitely many isomorphism classes of simple objects. We construct projective resolutions for the simple modules in these categories and compute the Ext groups between simple modules. We show that the projective covers of the simple modules in these Serre subcategories can be regarded as multigraded generalizations of Kirillov-Reshetikhin modules and give a recursive formula for computing their graded characters

    Random-mass Dirac fermions in an imaginary vector potential: Delocalization transition and localization length

    Full text link
    One dimensional system of Dirac fermions with a random-varying mass is studied by the transfer-matrix methods which we developed recently. We investigate the effects of nonlocal correlation of the spatial-varying Dirac mass on the delocalization transition. Especially we numerically calculate both the "typical" and "mean" localization lengths as a function of energy and the correlation length of the random mass. To this end we introduce an imaginary vector potential as suggested by Hatano and Nelson and solve the eigenvalue problem. Numerical calculations are in good agreement with the results of the analytical calculations.Comment: 4 page

    Localization properties of a one-dimensional tight-binding model with non-random long-range inter-site interactions

    Get PDF
    We perform both analytical and numerical studies of the one-dimensional tight-binding Hamiltonian with stochastic uncorrelated on-site energies and non-fluctuating long-range hopping integrals . It was argued recently [A. Rodriguez at al., J. Phys. A: Math. Gen. 33, L161 (2000)] that this model reveals a localization-delocalization transition with respect to the disorder magnitude provided . The transition occurs at one of the band edges (the upper one for and the lower one for). The states at the other band edge are always localized, which hints on the existence of a single mobility edge. We analyze the mobility edge and show that, although the number of delocalized states tends to infinity, they form a set of null measure in the thermodynamic limit, i.e. the mobility edge tends to the band edge. The critical magnitude of disorder for the band edge states is computed versus the interaction exponent by making use of the conjecture on the universality of the normalized participation number distribution at transition.Comment: 7 pages, 6 postscript figures, uses revtex

    Reachability in Parametric Interval Markov Chains using Constraints

    Full text link
    Parametric Interval Markov Chains (pIMCs) are a specification formalism that extend Markov Chains (MCs) and Interval Markov Chains (IMCs) by taking into account imprecision in the transition probability values: transitions in pIMCs are labeled with parametric intervals of probabilities. In this work, we study the difference between pIMCs and other Markov Chain abstractions models and investigate the two usual semantics for IMCs: once-and-for-all and at-every-step. In particular, we prove that both semantics agree on the maximal/minimal reachability probabilities of a given IMC. We then investigate solutions to several parameter synthesis problems in the context of pIMCs -- consistency, qualitative reachability and quantitative reachability -- that rely on constraint encodings. Finally, we propose a prototype implementation of our constraint encodings with promising results

    Splitting Proofs for Interpolation

    Full text link
    We study interpolant extraction from local first-order refutations. We present a new theoretical perspective on interpolation based on clearly separating the condition on logical strength of the formula from the requirement on the com- mon signature. This allows us to highlight the space of all interpolants that can be extracted from a refutation as a space of simple choices on how to split the refuta- tion into two parts. We use this new insight to develop an algorithm for extracting interpolants which are linear in the size of the input refutation and can be further optimized using metrics such as number of non-logical symbols or quantifiers. We implemented the new algorithm in first-order theorem prover VAMPIRE and evaluated it on a large number of examples coming from the first-order proving community. Our experiments give practical evidence that our work improves the state-of-the-art in first-order interpolation.Comment: 26th Conference on Automated Deduction, 201

    Realization of Rectangular Artificial Spin Ice and Direct Observation of High Energy Topology

    Get PDF
    In this letter, we have constructed and experimentally investigated frustrated arrays of dipoles forming two-dimensional artificial spin ices with different lattice parameters (rectangular arrays with horizontal and vertical lattice spacings denoted by aa and bb respectively). Arrays with three different ratios γ=a/b=2\gamma =a/b = \sqrt{2}, 3\sqrt{3} and 4\sqrt{4} are studied. Theoretical calculations of low-energy demagnetized configurations for these same parameters are also presented. Experimental data for demagnetized samples confirm most of the theoretical results. However, the highest energy topology (doubly-charged monopoles) does not emerge in our theoretical model, while they are seen in experiments for large enough γ\gamma. Our results also insinuate that magnetic monopoles may be almost free in rectangular lattices with a critical ratio γ=γc=3\gamma = \gamma_{c} = \sqrt{3}, supporting previous theoretical predictions
    • …
    corecore