2,217 research outputs found

    Extra-large crystal emulsion detectors for future large-scale experiments

    Full text link
    Photographic emulsion is a particle tracking device which features the best spatial resolution among particle detectors. For certain applications, for example muon radiography, large-scale detectors are required. Therefore, a huge surface has to be analyzed by means of automated optical microscopes. An improvement of the readout speed is then a crucial point to make these applications possible and the availability of a new type of photographic emulsions featuring crystals of larger size is a way to pursue this program. This would allow a lower magnification for the microscopes, a consequent larger field of view resulting in a faster data analysis. In this framework, we developed new kinds of emulsion detectors with a crystal size of 600-1000 nm, namely 3-5 times larger than conventional ones, allowing a 25 times faster data readout. The new photographic emulsions have shown a sufficient sensitivity and a good signal to noise ratio. The proposed development opens the way to future large-scale applications of the technology, e.g. 3D imaging of glacier bedrocks or future neutrino experiments.Comment: Version accepted for publication in JINS

    Free vibration of a three-layered sandwich beam using the dynamic stiffness method and experiment

    Get PDF
    In this paper, an accurate dynamic stiffness model for a three-layered sandwich beam of unequal thicknesses is developed and subsequently used to investigate its free vibration characteristics. Each layer of the beam is idealised by the Timoshenko beam theory and the combined system is reduced to a tenth-order system using symbolic computation. An exact dynamic stiffness matrix is then developed by relating amplitudes of harmonically varying loads to those of the responses. The resulting dynamic stiffness matrix is used with particular reference to the Wittrick-Williams algorithm to carry out the free vibration analysis of a few illustrative examples. The accuracy of the theory is confirmed both by published literature and by experiment. The paper closes with some concluding remarks. (c) 2007 Elsevier Ltd. All rights reserved

    Development of Nuclear Emulsion Detector for Muon Radiography

    Get PDF
    AbstractMuon radiography is the non-destructive testing technique of large-scale constructions with cosmic ray muon. Cosmic ray muon has high penetrating power and it always comes from the whole sky. In the same way of taking a X-ray photograph, we can obtain integrated density of constructions which thickness are several tens to several hundreds. We had ever applied this technique to nuclear reactors, volcanos, and so on. Nuclear emulsion is three dimensional track detector with micrometric position accuracy. Thanks to high position resolution, Nuclear emulsion has mrad angular resolution. In addition, the features which require no power supply and can observe in a large area suitable for muon radiography. In Nagoya University, we launched emulsion manufacturing equipment at 2010. It has become possible to flexible development of our detector and succeeded to development of high sensitive nuclear emulsion film (Nagoya emulsion). An important factor is the temperature characteristic to withstand the outdoor observation as a detector to be used in the muon radiography. There is a phenomenon of a latent image fading, whichit is well known in the photographic industry, and this phenomenon is known that temperature and water are involved. So we examined temperature and humidity characteristic of latent image fading about Nagoya emulsion. As a result, we found latent image fading is strongly depends on both temperature and humidity. By dehydrating emulsion film in RH8%, over 95% (Grain Density>40) detection efficiency of muon track keeps over 3months in 25degree, for 2months in 35degree. Additionally it was showed in this test that increasing back ground noise “fog”, which may have occurred by sealing emulsion film in a narrow space, is reduced by buffer space in the bag

    Formation of the Terrestrial Planets from a Narrow Annulus

    Full text link
    We show that the assembly of the Solar System terrestrial planets can be successfully modelled with all of the mass initially confined to a narrow annulus between 0.7 and 1.0 AU. With this configuration, analogues of Mercury and Mars often form from the collisional evolution of material diffusing out of the annulus under the scattering of the forming Earth and Venus analogues. The final systems also possess eccentricities and inclinations that match the observations, without recourse to dynamical friction from remnant small body populations. Finally, the characteristic assembly timescale for Earth analogues is rapid in this model, and consistent with cosmochemical models based on the 182^{182}Hf--182^{182}W isotopes. The agreement between this model and the observations suggests that terrestrial planet systems may also be formed in `planet traps', as has been proposed recently for the cores of giant planets in our solar system and others.Comment: 37 pages, 16 figures. to appear in Ap

    Aggregation number distributions and mesoglobules in dilute solutions of diblock and triblock copolymers

    Full text link
    We investigate the aggregation number and size distributions for inter-molecular clusters of amphiphilic diblock and triblock copolymers in poor solvent at very low concentrations. Diblocks and triblocks with hydrophilic ends are shown to possess narrow distributions corresponding to formation of monodispersed mesoglobules. Diblocks with hydrophobic ends are found to produce inter-cluster multimers due to bridging by the hydrophilic middle blocks, resulting in polydisperse distributions. Implications of these observations for preparation of monodispersed nanoparticles and, potentially, understanding of the quaternary structure of proteins are discussed.Comment: 4 pages, 4 PS figures. Accepted for publication in EP

    A local prescription for the softening length in self-gravitating gaseous discs

    Full text link
    In 2D-simulations of self-gravitating gaseous discs, the potential is often computed in the framework of "softened gravity" initially designed for N-body codes. In this special context, the role of the softening length LAMBDA is twofold: i) to avoid numerical singularities in the integral representation of the potential (i.e., arising when the relative separation vanishes), and ii) to acount for stratification of matter in the direction perpendicular to the disc mid-plane. So far, most studies have considered LAMBDA as a free parameter and various values or formulae have been proposed without much mathematical justification. In this paper, we demonstrate by means of a rigorous calculus that it is possible to define LAMBDA such that the gravitational potential of a flat disc coincides at order zero with that of a geometically thin disc of the same surface density. Our prescription for LAMBDA, valid in the local, axisymmetric limit, has the required properties i) and ii). It is mainly an analytical function of the radius and disc thickness, and is sensitive to the vertical stratification. For mass density profiles considered (namely, profiles expandable over even powers of the altitude), we find that LAMBDA : i) is independant of the numerical mesh, ii) is always a fraction of the local thickness H, iii) goes through a minimum at the singularity (i.e., at null separation), and iv) is such that 0.13 < LAMBDA/H < 0.29 typically (depending on the separation and on density profile). These results should help us to improve the quality of 2D- and 3D-simulations of gaseous discs in several respects (physical realism, accuracy, and computing time).Comment: accepted in A&A, 7 pages, 7 figures, web link for the F90 code and on-line calculations : http://www.obs.u-bordeaux1.fr/radio/JMHure/intro2single.ph

    High-resolution tracking in a GEM-Emulsion detector

    Full text link
    SHiP (Search for Hidden Particles) is a beam dump experiment proposed at the CERN SPS aiming at the observation of long lived particles very weakly coupled with ordinary matter mostly produced in the decay of charmed hadrons. The beam dump facility of SHiP is also a copious factory of neutrinos of all three kinds and therefore a dedicated neutrino detector is foreseen in the SHiP apparatus. The neutrino detector exploits the Emulsion Cloud Chamber technique with a modular structure, alternating walls of target units and planes of electronic detectors providing the time stamp to the event. GEM detectors are one of the possible choices for this task. This paper reports the results of the first exposure to a muon beam at CERN of a new hybrid chamber, obtained by coupling a GEM chamber and an emulsion detector. Thanks to the micrometric accuracy of the emulsion detector, the position resolution of the GEM chamber as a function of the particle inclination was evaluated in two configurations, with and without the magnetic fiel

    Right Inferior Frontal Activation During Alcohol-Specific Inhibition Increases With Craving and Predicts Drinking Outcome in Alcohol Use Disorder

    Get PDF
    Alcohol use disorder (AUD) is characterized by enhanced cue-reactivity and the opposing control processes being insufficient. The ability to inhibit reactions to alcohol-related cues, alcohol-specific inhibition, is thus crucial to AUD; and trainings strengthening this ability might increase treatment outcome. The present study investigated whether neurophysiological correlates of alcohol-specific inhibition (I) vary with craving, (II) predict drinking outcome in AUD and (III) are modulated by alcohol-specific inhibition training. A total of 45 recently abstinent patients with AUD and 25 controls participated in this study. All participants underwent functional magnetic resonance imaging (fMRI) during a Go-NoGo task with alcohol-related as well as neutral conditions. Patients with AUD additionally participated in a double-blind RCT, where they were randomized to either an alcohol-specific inhibition training or an active control condition (non-specific inhibition training). After the training, patients participated in a second fMRI measurement where the Go-NoGo task was repeated. Percentage of days abstinent was assessed as drinking outcome 3 months after discharge from residential treatment. Whole brain analyses indicated that in the right inferior frontal gyrus (rIFG), activation related to alcohol-specific inhibition varied with craving and predicted drinking outcome at 3-months follow-up. This neurophysiological correlate of alcohol-specific inhibition was however not modulated by the training version. Our results suggest that enhanced rIFG activation during alcohol-specific (compared to neutral) inhibition (I) is needed to inhibit responses when craving is high and (II) fosters sustained abstinence in patients with AUD. As alcoholspecific rIFG activation was not affected by the training, future research might investigate whether potential training effects on neurophysiology are better detectable with other methodological approaches

    Pifithrin-alpha inhibits p53 signaling after interaction of the tumor suppressor protein with hsp90 and its nuclear translocation

    Get PDF
    Pifithrin-alpha (PFTalpha) was originally thought to be a specific inhibitor of signaling by the tumor suppressor protein p53. However, the laboratory that discovered pifithrin recently reported that the compound also inhibits heat shock and glucocorticoid receptor (GR) signaling, and they suggested that PFTalpha targets a factor common to all three signal transduction pathways, such as the hsp90/hsp70-based chaperone machinery (Komarova, E. A., Neznanov, N., Komarov, P. G., Chernov, M. V., Wang, K., and Gudkov, A. V. (2003) J. Biol. Chem. 278, 15465-15468). Because it is important for the mechanistic study of this machinery to identify unique inhibitors of chaperone action, we have examined the effect of PFTalpha on transcriptional activation, the hsp90 heterocomplex assembly, and hsp90-dependent nuclear translocation for both p53 and the GR. At concentrations where PFTalpha blocks p53-mediated induction of p21/Waf-1 in human embryonic kidney cells, we observed no inhibition of GR-mediated induction of a chloramphenicol acetyl transferase reporter in LMCAT cells. PFTalpha did, however, cause a left shift in the dexamethasone dose response curve by increasing intracellular dexamethasone concentration, apparently by competing for dexamethasone efflux from the cell. The assembly of p53 or GR heterocomplexes with hsp90 and immunophilins was not affected by PFTalpha either in vivo or in vitro and did not affect the nuclear translocation of either transcription factor. Thus, we conclude that PFTalpha does not inhibit GR-mediated induction or the function of the chaperone machinery, and, as originally thought, it may specifically inhibit p53 signaling by acting at a stage after p53 translocation to the nucleus.Fil: Murphy, Patrick J.. University of Michigan; Estados UnidosFil: Galigniana, Mario Daniel. University of Michigan; Estados Unidos. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; ArgentinaFil: Morishima, Yoshihiro. University of Michigan; Estados UnidosFil: Harrell, Jennifer M.. University of Michigan; Estados UnidosFil: Kwok, Roland P.. University of Michigan; Estados UnidosFil: Ljungman, Mats. University of Michigan; Estados UnidosFil: Pratt, William B.. University of Michigan; Estados Unido
    • …
    corecore