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Abstract 

In this paper an accurate dynamic stiffness model for a three-layered sandwich beam of 

unequal thicknesses is developed and subsequently used to investigate its free vibration 

characteristics. Each layer of the beam is idealised by the Timoshenko beam theory and the 

combined system is reduced to a tenth order system using symbolic computation. An exact 

dynamic stiffness matrix is then developed by relating amplitudes of harmonically varying loads 

to those of the responses. The resulting dynamic stiffness matrix is used with particular reference 

to the Wittrick-Williams algorithm to carry out the free vibration analysis of a few illustrative 

examples. The accuracy of the theory is confirmed both by published literature and by 

experiment. The paper closes with some concluding remarks. 

Keywords: Dynamic stiffness method; Free vibration; Sandwich beam; Timoshenko theory, Wittrick–

Williams algorithm; Symbolic computation  
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1. Introduction 

 The dynamic behaviour of sandwich beams is well researched and the literature has been around for 

nearly half a century. A sample of selected papers published in recent years is given in the list of 

references, which review the state of the art and provide numerous cross-references on the subject. One of 

the main reasons for conducting research in this area is due to the fact that sandwich constructions offer 

designers a number of advantages of which, perhaps the most important one is the high strength to weight 

ratio. This can be crucial, particularly in aerospace design, where weight saving is, as always, a major 

consideration. The published literature on the free vibration analysis of sandwich beams deals mainly 

with three layered sandwich beams that are elastic (and some times viscoelastic), homogeneous and 

isotropic, but rigidly joined together, and for which the top and bottom layers are generally made of 

strong materials such as steel or aluminium whereas the core (i.e. the middle layer) is relatively soft, for 

example, rubber or honeycomb structures, so as to provide adequate damping and good energy absorption 

characteristics. A majority of the analyses reported, appear to have been carried out either by using the 

solution of the classical governing differential equations and thereby imposing the boundary conditions or 

by using the conventional finite element methods. However, in recent years, Banerjee (2003), Banerjee 

and Sobey (2005), and Howson and Zare (2005) used a different approach, which is that of the dynamic 

stiffness method. The authors of these papers have pointed out that there are many advantages of the 

dynamic stiffness method in that it is probably the most accurate method (often called an exact method) 

and unlike the finite element and other approximate methods, the model accuracy is not unduly 

compromised, as a result of using a small number of elements in the analysis. For instance, one single 

structural element can be used in the dynamic stiffness method to compute any number of natural 

frequencies to any desired accuracy. This is, of course, impossible in the finite element and other 

approximate methods. Earlier investigators of the free vibration analysis of sandwich beams using the 

dynamics stiffness method have had varying degrees of success. However, it is to be noted that during the 

developments of the dynamic stiffness method, especially for solving the sandwich beam vibration 
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problem, there were considerable difficulties due to lack of knowledge and scarcity of literature on the 

subject. Thus, in the initial stages, simplifying assumptions were made and the choice of the allowable 

displacement was significantly restricted. This was probably justified at the time, particularly in view of 

the complexities involved in deriving as well as solving the governing differential equations in closed 

analytical form that are basic requirements in the dynamic stiffness method. For instance, Banerjee (2003) 

in his earlier work assumed that the top and bottom layers of the sandwich beam behave according to the 

Bernoulli-Euler beam theory whereas the core deforms only in shear. This was no-doubt restrictive, but 

nevertheless, the theory worked well for certain classes of problems, particularly in the lower frequency 

range. A couple of years later, Banerjee and Sobey  (2005) improved the model substantially, by 

idealising the top and bottom layers as Rayleigh beams whereas the central core as a Timoshenko beam. 

This recent development which led to an eight-order system as opposed to the sixth order one in the 

former, benefited very considerably from the use of symbolic computation when manipulating the 

algebra. Without the application of symbolic computation the work would have been very difficult, and 

probably impossible. With the advent of symbolic computation, the research using the dynamic stiffness 

method to solve free vibration problems has no-doubt been facilitated, which partly motivated this work.  

 

 The current study advances the earlier studies of Banerjee (2003) and Banerjee and Sobey (2005) 

significantly, by modelling each layer of the sandwich beam as a Timoshenko beam. This resulted in a 

tenth order system as opposed to the sixth (Banerjee, 2003) and eight (Banerjee and Sobey, 2005) order 

systems in previous studies. As it will be shown later, the derivation of the governing differential 

equations of motion of the system, development of the dynamic stiffness matrix and finally application of 

the dynamic stiffness matrix to solve the free vibration problem are of considerable complexity, requiring 

substantial amount of symbolic and numerical computations. The investigation is carried out in following 

steps : (i) first the energy expressions of a three-layered asymmetric sandwich beam are formulated using 

the theory of elasticity, (ii) secondly, Hamilton’s principle is applied to derive the governing differential 

equations of motion and associated natural boundary conditions, (iii) next, by assuming harmonic 
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oscillation, the differential equations are combined into a tenth order system by making extensive use of 

symbolic computation, (iv) the tenth order system is then solved in closed analytical form, (v) 

subsequently, the frequency dependent dynamic stiffness matrix of the system is derived by relating the 

amplitudes of the axial forces, shear forces and bending moments to those of the axial and flexural 

displacements and bending rotations, (vi) the well known algorithm of Wittrick and Williams (1971) is 

then applied to the resulting dynamic stiffness matrix for free vibration analysis of some illustrative 

examples, and (vi) finally, the theory is validated by experiment using an impulse hammer kit.  

2. Theory 

2.1  Derivation of the governing differential equations of motion in free vibration and solution 

 

 The following general assumptions are made when developing the governing differential equations of 

motion in free vibration of a three layered sandwich beam of asymmetric cross-section. 

 

(i) All displacements and strains are small so that the theory of linear elasticity applies. 

(ii) The faces and core of the sandwich beam are made of homogeneous and isotropic materials and 

the variation of strain within them is linear. 

(iii) Transverse normal strains in the faces and core are negligible. 

(iv) There is no slippage or delamination between the layers during deformation. 

 

In a rectangular Cartesian coordinate system, Fig. 1 shows a three-layered sandwich beam of length L. 

Each layer has its own geometric and material properties with a subscript i denoting the layer number (i=1 

for the top layer). Thus each layer has thickness hi, width bi (so that area Ai = bihi), second moment of area 

Ii, density ρi, (so that the mass per unit length mi = ρiAi), Young’s modulus Ei, shear modulus Gi, and 

shear correction or shape factor ki (ki <1).  
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The system of displacements used is as follows. All three layers have a common flexure in the y-

direction with the flexural displacement denoted by w. The axial displacement (i.e. the displacement in 

the x-direction) of the mid-plane of each layer is ui (i = 1, 2 and 3) which varies linearly through the 

thickness. The axial displacement of the interface between layers 1 and 2 is u12 whereas for that of the 

interface between layers 2 and 3 is u23 as shown in Fig. 1. The cross-section of each layer does not rotate 

so as to be normal to the common flexure, but it necessarily shears leading to the Timoshenko beam 

formulation. 

 

 

         Fig. 1. The coordinate system and notation for a three-layered sandwich beam 

 
Given the displacement system in layers 1 and 3, the displacement in layer 2 is fully determinate. This 

carries over into axial stress, which is dependent on derivatives with respect to x of ui and velocity with 

time derivatives. Thus a model can be developed in which the behaviour of the central layer is described 

in terms of the behaviour of the outer layers.  

 
Using the continuity of deformation, the displacement u12 and u23 at the layer boundaries can be 

expressed as  

( ) ( ) 22211112 22 θθ huhuu −=+=  (1) 

( ) ( ) 22233323 22 θθ huhuu +=−=  (2) 
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Equations (1) and (2) give 

 

( ) 2/2 3311312 θθ hhuuu −++=  (3) 

( ) 2/33111322 θθθ hhuuh +−−=  (4) 

 

By allowing each of the three layers to have the same flexural displacement w in direction oy, the local 

rotations 321 ,, θθθ  which are not identified with w′ , where the prime denotes differentiation with respect 

to x, a Timoshenko beam type model can be constructed. Each layer has linear variation of axial 

displacement and stress with respect to y in the cross-section, but the shear stress and strain remain 

constant. 

 

In developing the strain and kinetic energies, repeated use is made of the following well-known 

results. 

 

If f(x) is a linear function of x varying from f1 = f(x1) at x = x1 to f2 = f(x2) at x = x2 then  

∫ ++−=
2

1

3/))(()]([ 2
221

2
112

2
x

x
ffffxxdxxf  (5) 

 

Strain energy due to axial stress in layer 1 is given by 

 

∫ ∫ ∫=
V

xB dxdydzEU 2
1 ][

2
1

1
ε   (6) 

where xε varies linearly from 1
1

1 2
θ ′−′ hu   to  1

1
1 2

θ ′+′ hu  through the thickness 

 

Noting that the width b1 of layer 1 is constant, the strain energy 
1BU  becomes 
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where 
12

3
11

1
hbI =  is the second moment of area of the cross-section and E1A1 and E1I1 are respectively 

extensional (or axial) and bending (or flexural) rigidities of layer 1 

 

It follows that total strain energy due to axial stresses in all three layers is  

 

( ){ ( ) ( ) ( ) ( ) ( ) } dxIEIEIEuAEuAEuAEU
L

B
2

333
2

222
2

111
2

333
2

222
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2
1112
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In layer 1, the shear strain is 11 θγ −′= w  and this is presumed constant across the cross-section. The 

strain energy due to shear force in layer 1 is given by (Banerjee and Sobey, 2005) 

( )  dxwGAkU
L

S ∫ −′=
0

2
11111 2

1 θ   (9) 

where k1A1G1 is the shear rigidity of layer 1. 

 

Strain energy due to shear forces in layers 2 and 3 can similarly be obtained and the total strain energy 

of the whole beam due to shearing is given by 

 

( ) ( ) ( ) }{ dxwGAkwGAkwGAkU
L

S ∫ −′+−′+−′=
0
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Thus the total strain energy U of the sandwich beam due to normal and shear strains can be written as 

 

( ){ ( ) ( ) ( ) ( ) ( ) }[
( ) ( ) ( ) }{ ]dxwGAkwGAkwGAk

IEIEIEuAEuAEuAEU
L

2
3333

2
2222

2
1111

0

2
333

2
222

2
111

2
333

2
222

2
111

        

2
1

θθθ

θθθ

−′+−′+−′+

∫ ′+′+′+′+′+′=
     (11) 

For the kinetic energy, the axial velocity in layer 1 varies linearly from 1
1

1 2
θ&& hu −  to 1

1
1 2

θ&& hu + , so that 

the kinetic energy T1 for layer 1 is 
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In this way the total kinetic energy T of the sandwich beam can be expressed as 

 

{ }dxIIIuAuAuAwMT
L

 
2
1 2
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2 θρθρθρρρρ &&&&&&& +++++∫ +=                (13) 

where the first term is the transverse velocity contribution to the kinetic energy, and 

332211 AAAM ρρρ ++=  represents the mass per unit length of the whole sandwich beam. 

 

The problem can now be processed using Hamilton’s Principle, in which 2uδ  and 2δθ  are expressible 

in terms of the allowable variations 3 131  , , u  , δθδθδδu . The displacements 22  and θu  will be substituted 

from Eqs. (3) and (4) once the variational analysis is complete. 

 

Combining T and U from Eqs. (13) and (11) the Lagrangian UTL −= takes the following form 
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By applying Hamilton’s principle ∫ =
2

1

0
t

t
Ldtδ and using L from Eq. (14), the following set of 

differential equations are obtained 
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Note the symmetry of the differential operators in Eqs. (15)–(19). 
 

The associated boundary conditions generated by Hamilton’s principle are as follows. The axial forces 

in layers 1 and 3 (F1 and F3) are 
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Note that each of the above two forces includes a contribution from layer 2. 

 

The bending moments in layers 1 and 3 (M1 and M3) are 
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Note that each of the above two moments includes a contribution from layer 2. 
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The total shear force, S, in the y direction, is given by 
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Now for harmonic oscillation u1, u3, 1θ , 3θ and w may be written in the following form 

tititititi WeweeeUueUu ωωωωω θθ =Θ=Θ===       ;       ;            ;     ; 33113311  (25) 

 

where U1, U3, 1Θ , 3Θ and W, are the amplitudes of  u1, u3,, θ1, θ3 and w, and ω is the angular (or circular) 

frequency of free vibration, and i = √-1 

 

Substituting Eq. (25) into Eqs. (15)-(19) and introducing a non-dimensional length Lx /=ξ  and 

writing 
ξd
dD =  one obtains 
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( ) ( ) ( ) ( ) ( ) 02
331131 =+−Θ−Θ++− WtsDrDhnDhUfDUfD                (30) 

where a, b, c, e etc are non-dimensional quantities dependent on the sandwich beam parameters and are 

defined in Appendix I. 
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By extensive algebraic manipulation the differential equations (26)-(30) can be combined into a single 

tenth order differential equation satisfied by U1, U3, 1Θ , 3Θ and W as follows. (This task probably would 

have been impossible without the use of symbolic computation.) 
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10 =Φ+++++ µµµµµ DDDDD                (31) 
 

where WUU or ,or  ,or ,or  , 3131 ΘΘ=Φ . 

The coefficients 2,....,5) ,1( =jjµ  are given by 
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325 4444 DcDDcbDaD ++++=η  

76 tD=η  
 
where A1−A9, B1−B9 and C1 –C9  are defined in Appendix II. 
 

The differential equation (31) is linear with constant coefficients so that the solution can be assumed in 

the form 

ξreXX 0=                (34) 

Substituting Eq. (34) into Eq. (31) gives the auxiliary equation as follow 

05
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2
8

1
10 =+++++ µλµλµλµλµλ              (35) 

The above equation is a quintic in 2λ=p , namely 
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3
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2
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1
5 =+++++ µµµµµ ppppp              (36) 

which can be solved in a routine way. 
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Some pair or pairs of complex roots may occur, but as U1, U3, Θ1, Θ3 and W are all real, the associated 

coefficients; say jX  in the solution for ∑=
=
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1j

r
j

jeXX ξ will also be complex. As complex roots occur only in 

conjugate pairs, the associated jX  will also occur in conjugate pairs. 

 
Thus, the solution for U1, U3, 1Θ , 3Θ and W can be written as 
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where jr (j = 1, 2…10) are the 10 roots of the auxiliary equation and jP , Qj , jR , jS and jT , (j = 1,2…10) 

are five sets of ten, possibly complex, constants.  

 
By substituting Eq. (37) into Eqs. (26)–(30) it can be shown that the constants jP , jQ , jR  and jS  are 

related to Tj  as follows so that the responses U1, U3, 1Θ , 3Θ  and W are linear combination of Tj. 

jjj TP α= ;       jjj TQ β= ;     jjj TR γ= ;     jjj TS η=                (38) 

 

where jjj γβα ,,  and jη  can be expressed directly from the five differential equations (26)-(30) and by 

applying Cramer’s rule to the following relationship for the determination of jP , jQ , jR  and jS , see 

Appendix III. 
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The expressions for the amplitudes of the axial forces in layer 1 and 3 (F1 and F3), the shear force 

across the cross-section (S) and the bending moments in layers 1 and 3 (M1 and M3) are given in Eqs. 

(20)–(24). With the help of Eqs. (37) and (38) it can be shown that the loads ( )ξ1F , ( )ξ3F , ( )ξ1M , ( )ξ3M  

and ( )ξS are also linear combinations of Tj. Noting that these forces and moments vary harmonically 

during vibratory motion in the same way as the displacements and rotations, so that they are (as functions 

of the variable Lx /=ξ ) given by  
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2.2  Formulation of the dynamic stiffness matrix 

 
The amplitudes of the responses and loads of the freely vibrating sandwich beam are given by Eqs. 

(37) and Eqs. (40)-(44), respectively which can now be related by the dynamic stiffness matrix on 

eliminating the arbitrary constants Tj (j = 1, 2, 3,….10). Referring to Fig. 2 the boundary conditions for 

responses and loads of the sandwich beam are as follows. 

 

At the left hand end, 0=ξ (x = 0), the responses are U1 (0), U3 (0), Θ1 (0), Θ 3 (0) and W (0). The 

corresponding responses at the right hand end, 1=ξ (x = L), are U1 (1), U3 (1), Θ1 (1), Θ 3 (1) and W (1), 

see Fig. 2. By substituting 0=ξ  and 1=ξ  in Eq (37), these boundary conditions give 
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Fig. 2. End conditions for responses and loads for the three-layered sandwich beam 
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Equations (45) and (46) can be written in the following matrix form and by using Eq. (38) and simply 

referring the state vector of response U1(0), U3 (0), Θ1 (0), Θ 3 (0), W (0), U1 (1), U3 (1), Θ1 (1), Θ 3 (1) and 

W (1), to only one set of arbitrary constants Tj as follows. 
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                                 (47) 

or 

δ = Q T                                                                                                                                                 (48) 

where δ and T are displacement and constant vectors respectively and Q is the 10×10 square matrix given 

above. 

 

Similarly at the left hand end, 0=ξ (x = 0), the loads are F1 (0), F3 (0), M1 (0), M 3 (0) and S (0), and 

the corresponding loads at the right hand end at 1=ξ (x = L), are F1 (1), F3 (1), M1 (1), M 3 (1) and S (1), 

see Fig. 2. By substituting 0=ξ and 1 in Eqs. (40)-(44), and noting that the signs for the forces must be 

reversed at the right hand end and as a consequence of the convention, these boundary conditions give the 

following matrix relationship. 
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or  

F = RT                                                                                                                                                  (50) 

where F is the state vector of loads, T is the vector of constants and the elements of the 10×10 square 

matrix R are as follows. 
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jr
jj eaa 16 −= ;     jr

jj eaa 27 −= ;      jr
jj eaa 38 −= ;      jr

jj eaa 49 −= ;     jr
jj eaa 510 −=             (56)-(60) 

where ...103,........ 2, ,1=j . 

 

The dynamic stiffness matrix can now be formulated by eliminating T from the Eqs. (48) and (50) to 

give 

F = R Q-1δ = K δ                                                                                                                                 (61) 

where 

K = R Q-1                                                                                                                                             (62) 

is the require dynamic stiffness matrix. 

 

3. Application of the Dynamic Stiffness Matrix and Numerical Results 

The above dynamic stiffness matrix can now be used to compute the natural frequencies and mode 

shapes of either a single three-layered sandwich beam or an assembly of such beams, for example a 

continuous sandwich beam on multiple supports. An accurate and reliable method of calculating the 

natural frequencies and mode shapes is to apply the algorithm of Wittrick and Williams (Banerjee, 2003; 

Banerjee and Sobey, 2005; Wittrick and Williams, 1971) to the dynamic stiffness matrix. The algorithm, 

unlike its proof, is simple to use and relies principally on the Sturm sequence property of the dynamic 

stiffness to converge on any natural frequency with certainty. It has featured in literally hundreds of 

papers the details of which are not repeated here, but for further insight interested readers are referred to 

the original work of Wittrick and Williams (1971). 
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First of all, for illustrative purposes two examples of a three-layered sandwich beam are provided to 

compare results obtained from the present theory to the ones computed using earlier (and simpler) 

theories. The first example is a three-layered sandwich beam of length 0.5m with rectangular cross-

section. The top and bottom layers are made of steel with thicknesses 15 mm and 10mm respectively, 

whereas the middle layer is of rubber material with thickness 20 mm. The width is 40 mm for all layers. 

The properties used for steel and rubber are as follows with the suffix s denoting the properties for steel 

and the suffix r denoting the properties for rubber: GPaEs 210= , GPaGs 80= , 3/7850 mkgs =ρ , 

MPaEr 5.1= , MPaGr 5.0=  and 3/950 mkgr =ρ . The shear correction or shape factor used in the analysis 

for each layer is set to 2/3 which is generally used for a rectangular cross-section. The second example is 

similar to the first one except that only the central layer (i.e. the core) which was rubber in the first 

example, is now replaced by lead with material properties (using suffix l): GPaEl 16= , GPaGl 5.5=  and 

3/11100 mkgl =ρ .  

 

The complete set of data used in the analysis for the two illustrative examples is shown in Table 1 for 

interested readers who wish to develop the present theory further or wish to check their own theories. The 

first four natural frequencies of the two examples, with cantilever end conditions, are shown in Table 2 

together with the results obtained by using the earlier theory of Banerjee and Sobey (2005). The 

differences in the natural frequencies are quite small. This is to be expected because of the relatively 

important role played by the core, which is modelled as a Timoshenko beam both in the present theory as 

well as in the earlier theory of Banerjee and Sobey (2005). The main difference between the present 

theory and the earlier theory is essentially in the modelling of the top and bottom layers for which the 

effects of both shear deformation and rotatory inertia are included in the present theory, whereas only the 

effects of rotatory inertia are included in the earlier theory. For the results of the two examples shown in 

Table 2, shear deformation of the face layers is not expected to have any major effect.  
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Figures 3 and 4 illustrate the first four natural frequencies and mode shapes of the two cantilever 

sandwich beams. The results reveal some interesting features. For the first example the modes are all 

dominated by flexure (W displacement). This occurs because of the soft core and strong face materials. 

The fundamental mode exhibits flexural displacement associated with small axial displacements (U1 and 

U3) of the face layers that are moving in opposite directions. The second and third modes have similar 

trends, but the fourth mode is a pure flexural one.  In the second example, where the central core is 

replaced by lead, the first three modes are similar to the ones shown for the first example so that the free 

vibratory motion is predominantly flexural. However, the fourth mode is purely axial with U1 and U3 

displacements in the same direction, but no flexural motion. (Note that the two graphs shown in Fig. 4 for 

U1 and U3 in the fourth mode are coincident.) This is in sharp contrast to the fourth mode of the first 

example. The high density and low Young’s modulus of lead used for the core in the second example is 

the main reason for this type of mode. This is in accord with the earlier investigation carried out by 

Banerjee and Sobey (2005). 

 

The next set of results was obtained to illustrate the effects of shear deformation and rotary inertia on 

the natural frequencies of the sandwich beams. To demonstrate these effects, the length of the beam was 

varied and the natural frequencies of the two examples were computed and plotted against of h/L, where h 

= h1 + h2 + h3 is the total thickness of the sandwich beam. For the above two examples, Figures 5(a) and 

5(b) show results obtained for the first two natural frequencies. The percentage error shown is calculated 

relative to the case when the effects of shear deformation and rotary inertia of the top and bottom layers 

are both neglected. The natural frequencies denoted by ωi (i = 1 and 2) correspond to the cases when the 

effects are ignored whereas the ones denoted by ωι
* include the effects. When h/L increases the error also 

increases, as expected. The magnitudes of the error for the two examples are different for the first natural 

frequency, but similar for the second one. The maximum error is around 9 % in the second natural 

frequency for both cases when the thickness to length ratio is around 0.5.  
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Table 1  

Data used for computation of natural frequencies and mode shapes of examples 1 and 2 

Properties 
Layer 1 

(Steel) 

Layer 2 

(Rubber) 

Example 1 

Layer 2 

(Lead) Example 

2 

Layer 3 

(Steel) 

b (m) 0.04 0.04 0.04 0.04 

h (m) 0.015 0.02 0.02 0.01 

A (m2) 0.0006 0.0008 0.0008 0.0004 

I (m4) 1.125×10-08 2.67×10-08 2.67×10-08 3.33×10-09 

G (GPa) 80 0.0005 5.5 80 

E (GPa) 210 0.0015 16 210 

ρ  (kg/m3) 7850 950 11100 7850 

k 32  32  32  32  

EA (N) 1.26×108 1.20×103 1.28×107 8.40×107 

EI (Nm2) 2.36×103 4.00×10-2 4.27×102 7.00×102 

kAG (N) 3.20×107 2.67×103 2.93×106 2.13×107 

Aρ (kg/m) 4.71 0.76 8.88 3.14 

Iρ (kgm) 8.83125×10 -5 2.53×10-5 0.000296 2.62×10 -5 

L (m) 0.5 0.5 0.5 0.5 
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Table 2  

Natural frequencies of a three-layered sandwich beam with cantilever end conditions 

Natural frequencies (rad/s) 

Example 1 Example 2 Frequency 

No. Using Banerjee and 

Sobey (2005)  
Present Theory 

Using Banerjee and 

Sobey (2005) 
Present Theory 

1 291.687 291.50 776.09 776.4 

2 1691.39 1684.48 3880.57 3841.1 

3 4669.07 4623.98 8899.37 8753.1 

4 9104.77 8945.18 11461.7 11459.2 
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 Fig.3. Natural frequencies and mode shapes of the three-layered sandwich 

beam of example 1.                           W;                         U1;                             U3  
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 Fig. 4. Natural frequencies and mode shapes of the three-layered sandwich beam of 
example 2.                           W;                            U1;                                      U3 
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 Fig.5. Effect of thickness to length ratio on the natural frequencies of examples 1and 2. 
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4.  Modal Testing and Further Validation of the Theory 

Experimental measurements of natural frequencies of three sandwich beam samples have been carried 

out using an impulse hammer kit with its associated software for data capturing and analysis. The beam 

samples are fabricated from aluminium, steel and rubber sheets that are pre-treated and polished first. 

Later they are degreased using acetone for 2 minutes before applying the adhesive (Araldite 2011). The 

surfaces are then dried and the adhesive applied evenly using a glue gun on the rubber surface, and the 

metal skin is laid on top for each side at a time. This is repeated for the other side of the rubber after 

allowing for 24 hours of curing time. Once the adhesive is applied the sandwich samples are cured for a 

further period of 24 hours in a press. Basically, the samples are laid on the base of the press between two 

thick metal plates to ensure pressure is distributed evenly all through the structure. The finished products 

are (with thicknesses shown in parentheses): (i) aluminium (2 mm)–rubber (18 mm)–aluminium (2 mm), 

(ii) steel (1.5 mm)–rubber (18 mm)–steel (2.4 mm), and (iii) steel (1.5 mm)–rubber (18 mm)–aluminium 

(2 mm), sandwich beams of length 500 mm and width 50 mm for each.  

 

The experimental modal testing set up using the impact hammer kit consisting of a PC driven ACE 

dynamic signal analyser and an accelerometer is shown in Fig. 6. All test specimens were cantilevered 

with one end fully built-in in order to prevent all displacements. The accelerometer is set at a fixed 

position on the test specimen, which is considered to be the reference point while the impact hammer is 

used at a number of points to generate the excitation forces on the test specimen, corresponding to the 

degrees of freedom allowed in the model. The location of the driving and measurement points is carefully 

chosen to identify all important modes of vibration of the structure within the desired frequency range. 

The transfer function between the driving force and the resulting response is computed using the data 

obtained during the measurement. Sandwich test specimens are excited at specified grid points that define 

the number of degrees of freedom of the structure. The Dynamic Signal Analyser system is used to extract 

force and signal response from the structure under test. The response signals recorded by the 
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accelerometer attached to the test specimen and the force signals recorded by the force transducer fitted 

inside the hammerhead are averaged from three repeated excitations and measurements at each location. 

The signal analyser further processes these signals and the frequency response functions (FRFs) are 

plotted against frequency from which the natural frequencies are identified. The first three measured 

natural frequencies of the above three specimens (except for the third natural frequency of sample 3 

which apparently did not show any peak) are shown in Table 3 alongside those calculated using the 

present theory. The variation of results between the theory and experiment is noticeable. The maximum 

difference is as much as 19%. The discrepancy is rather large and in part, can be attributed to the fact that 

the properties of rubber used in the theoretical analysis were not sufficiently accurate to match the ones 

used in the experiments. It is well known that the properties of rubber can vary markedly, but 

unfortunately the authors were unable to pinpoint the properties used in the experimental samples, 

accurately. Furthermore, a few difficulties were also encountered when carrying out the experiment, 

particularly when applying the built-in boundary condition at one end of the sandwich beam.  

 

 

Fig. 6 Experimental set up for modal testing of a cantilever sandwich beam. 

As an acceptable alternative, the authors carried out further investigations on fixed-fixed sandwich 

beams for which some experimental results reported in the literature came to their notice, see Raville et al 

(1961). This enabled further comparison of results to be possible. The results from the present theory and 
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the experimental results of Raville et al (1961) are shown in Table 4 together with the theoretical results 

recently published by Howson and Zare (2005). Note that Howson and Zare (2005) also reported the 

experimental results of Raville et al (1961) alongside their own theoretical results, but the volume number 

they quoted for this reference is in error (it should be 28 instead of 83).  The data used for this sandwich 

beam with length L = 1.2187 m are (see Howson and Zare (2005)) 

 

E1 = E3 = 68.9 GPa, E2 = 179.14 MPa, G1 = G3 = 26.5 GPa, G2 = 68.9 MPa, ρ1 = ρ3 = 2687.3 kg/m3, 

ρ2 = 119.69 kg/m3, h1 = h3 = 0.40624 mm, h2 = 6.3475 mm, b1 = b2 = b3 = 25.4 mm, k1 = k2 = k3 = 2/3. 

 

It should be noted that Raville et al (1961) in their experimental work, were able to measure only those 

natural frequencies of the sandwich beam that were above 100 Hz. This limitation was due to the 

equipment that was available to them at the time. As a consequence, they were unable to determine the 

first two natural frequencies of the sandwich beam. (The vibration exciter they used was not capable of 

generating a forcing function of the proper magnitude and frequency to capture the first two natural 

frequencies.) As shown in Table 4, the agreement between the set of results using the present theory, the 

experimental results of Raville et al (1961) and the theoretical results of Howson and Zare (2005) is 

generally very good. The maximum discrepancy is around 8%. Given the complexity of the problem and 

difficulties in the experimentation, this discrepancy is judged to be acceptable and within engineering 

accuracy. 
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Table 3  

Experimental and theoretical natural frequencies of a three-layered sandwich beam 

Natural frequencies (Hz)  

Sandwich beam specimens 

 

Frequency no 

(i) 

 

Experiment 

 

Present theory 

 

% difference 

with 

experiment 

1 11.25 10.46 7.02 

2 33.75 36.31 7.59 

 

(i) Aluminium-Rubber-

Aluminium 3 93.75 75.94 19.0 

1 10.62 9.04 14.9 

2 29.38 33.88 15.3 

 

(ii) Steel-Rubber-Steel 

3 53.75 63.73 18.6 

1 10.63 9.45 11.1 

2 29.38 33.30 13.3 

 

(iii) Steel-Rubber-

Aluminium 3 - 70.74 - 

 
 
Table 4 

Comparative results for the first seven natural frequencies of a fixed-fixed sandwich beam 
 

Natural frequency (Hz)  

Frequency no 

 

 
Present theory 

 
Experimental results 
Raville et al (1961) 

 
Howson and Zare (2005) 

1 34.342 − 34.597 

2 91.385 − 93.100 

3 171.69 185.5 177.16 

4 270.36 280.3 282.78 

5 383.27 399.4 406.33 

6 506.88 535.2 544.33 

7 638.39 680.7 693.79 

 



ACCEPTED MANUSCRIPT

AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 
30

5. Limitations of the Theory and Scope for Further Research 

The type of sandwich beam considered in this paper consists of structural face sheets rigidly bonded to a 

stabilizing core, which can have markedly different properties. Only the transverse vibration coupled with 

longitudinal deformation is considered and no allowances are made for lateral and/or torsional 

displacements. Clearly, the displacement field within the sandwich beam, particularly in the vicinity of 

the interface (junction), will be quite complex. The formulation presented here does not account for the 

higher order effects caused by the nonlinearity of the longitudinal and transverse deformations of the face 

layers and core through their thicknesses. Also the theory is compromised by ignoring the effect of 

warping of the cross-section caused by shear stresses. It has been assumed that the whole cross-section of 

the sandwich beam remains plane during flexure so that the displacements vary linearly through the 

thicknesses, which is, no-doubt a serious restriction. Although the dynamic stiffness theory presented here 

provides some practical advantages, a more detailed analytical approach based on rigorous three-

dimensional mathematical theory of elasticity might be useful particularly when the material properties 

change abruptly and the thicknesses of the face layers and core are relatively large. In this respect papers 

on the applications of zig-zag theories published by Icardi (2001, 2003) are worthy of careful study. In 

future research the face layers may be replaced by laminated composites. 

6. Conclusions 

An accurate dynamic stiffness matrix for a three-layered sandwich beam of asymmetric cross-section 

has been developed using Timoshenko beam theory, Hamiltonian mechanics and symbolic computation. 

The resulting dynamic stiffness matrix is applied using Wittrick-Williams algorithm to compute the 

natural frequencies and mode shapes of some illustrative examples. The results agree very well with those 

obtained using the earlier theories. An impulse hammer test has been carried out on three different 

sandwich beam samples and the experimental results match reasonably well with theoretical predictions 

using the dynamic stiffness theory. The investigation provides optimism for future studies on the dynamic 

analysis of complex sandwich structural systems.  
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Appendix I : Non-dimensional sandwich beam parameters used in Eqs. (26)-(30) 
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Appendix II : Non-dimensional sandwich beam parameters used in Eqs. (33) 
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Appendix III : Application of Cramer’s rule for the determination of constants of Eqs. (39) 
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