348 research outputs found
Design and pharmacological evaluation of Ibuprofen amides derivatives as dual FAAH/COX inhibitors
Fatty acid amide hydrolase (FAAH) is a serine hydrolase enzyme responsible of the hydrolytic degradation of N-acylethanolamine endocannabinoids, such as the Arachidonoylethanolamide (anandamide, AEA), which it has been shown to alleviate pain and inflammation (1). In particular, the anti-nociceptive and anti-inflammatory effects of AEA could be enhanced by the simultaneous block of FAAH and COX enzymes (2). For this reason, several studies have been carried out in order to develop new FAAH/COX inhibitors (2). In 1997 it was reported that the NSAID ibuprofen inhibited FAAH, although with a modest potency (3), and successively the first dual inibhitor, the amide derivative of ibuprofen with a 2-amino-3-methylpyridine side chain (Ibu-AM5) was reported (4). -5). Benzylamides and piperazinoamides analogs of Ibuprofen have been also designed as less potent FAAH inhibitors than Ibu-AM5 (5). Here, I discuss the computational studies and the structure–activity relationships leading to the design, of novel Ibuprofen amide derivatives with a higher inhibition potency of FAAH and COX, which represent novel powerful anti-nociceptive agents
Complete response to capecitabine in a frail, elderly patient with metastatic colorectal cancer: A case report
The clinical management of frail, elderly patients affected by colorectal cancer (CRC) remains a subject of debate. The present study reports the case of an elderly man with metastatic CRC (mCRC) who was successfully treated with capecitabine. The patient survived for 29 months, thus highlighting its potential activity in terms of obtaining a complete response and high efficacy. A 77-year-old man presented with adenocarcinoma of the rectum with multiple and synchronous liver metastases, in addition to several comorbidities. The patient received single‑agent capecitabine chemotherapy (825 mg/mq twice a day) on days 1-14 of a 21-day cycle. Following 12 cycles of well-tolerated therapy, a computed tomography scan revealed a complete response with no evidence of liver metastases. An overall survival of 29 months was documented, and the patient eventually succumbed to a diabetes-related complication. In compromised patients with mCRC, reduced-dose capecitabine is an excellent therapeutic option due to its positive safety profile, activity and efficacy
Evaluation of downscaled DEMETER multi‐model ensemble seasonal hindcasts in a northern Italy location by means of a model of wheat growth and soil water balance
In this paper we explore the new possibilities for early crop yield assessment at the local scale arising from the availability of dynamic crop growth models and of downscaled multi-model ensemble seasonal forecasts.We compare the use of the latter with other methods, based on crop growth models driven by observed climatic data only. The soil water balance model developed and used at ARPA Emilia-Romagna (CRITERIA) was integrated with crop growth routines from the model WOFOST 7.1. Some validation runs were first carried out and we verified with independent field data that the new integrated model satisfactorily simulated above-ground biomass and leaf area index. The model was then used to test the feasibility of using downscaled multi-model ensemble seasonal hindcasts, coming from the DEMETER European research project, in order to obtain early (i.e. 90, 60 and 30 d before harvest) yield assessments for winter wheat in northern Italy. For comparison, similar runs with climatology instead of hindcasts were also carried out. For the same purpose, we also produced six simple linear regression models of final crop yields on within season (end of March, April and May) storage organs and above-ground biomass values. Median yields obtained using downscaled DEMETER hindcasts always outperformed the simple regression models and were substantially equivalent to the climatology runs, with the exception of the June experiment, where the downscaled seasonal hindcasts were clearly better than all other methods in reproducing the winter wheat yields simulated with observed weather data. The crop growth model output dispersion was almost always significantly lower than the dispersion of the downscaled ensemble seasonal hindcast used as input for crop simulations
Design, synthesis and in vitro and in vivo biological evaluation of flurbiprofen amides as new fatty acid amide hydrolase/cyclooxygenase-2 dual inhibitory potential analgesic agents
Compounds combining dual inhibitory action against FAAH and cyclooxygenase (COX) may be potentially useful analgesics. Here, we describe a novel flurbiprofen analogue, N-(3-bromopyridin-2-yl)-2-(2-fluoro-(1,1'-biphenyl)-4-yl)propanamide (Flu-AM4). The compound is a competitive, reversible inhibitor of FAAH with a Ki value of 13 nM and which inhibits COX activity in a substrate-selective manner. Molecular modelling suggested that Flu-AM4 optimally fits a hydrophobic pocket in the ACB region of FAAH, and binds to COX-2 similarly to flurbiprofen. In vivo studies indicated that at a dose of 10 mg/kg, Flu-AM4 was active in models of prolonged (formalin) and neuropathic (chronic constriction injury) pain and reduced the spinal expression of iNOS, COX-2, and NFκB in the neuropathic model. Thus, the present study identifies Flu-AM4 as a dual-action FAAH/substrate-selective COX inhibitor with anti-inflammatory and analgesic activity in animal pain models. These findings underscore the potential usefulness of such dual-action compounds
Molecular Basis for Non-Covalent, Non-Competitive FAAH Inhibition
Fatty acid amide hydrolase (FAAH) plays a key role in the control of cannabinoid signaling and it represents a promising therapeutic strategy for the treatment of a wide range of diseases, including neuropathic pain and chronic inflammation. Starting from kinetics experiments carried out in our previous work for the most potent inhibitor 2-amino-3-chloropyridine amide (TPA14), we have investigated its non-competitive mechanism of action using molecular dynamics, thermodynamic integration and QM-MM/GBSA calculations. The computational studies highlighted the impact of mutations on the receptor binding pockets and elucidated the molecular basis of the non-competitive inhibition mechanism of TPA14, which prevents the endocannabinoid anandamide (AEA) from reaching its pro-active conformation. Our study provides a rationale for the design of non-competitive potent FAAH inhibitors for the treatment of neuropathic pain and chronic inflammation
Structural Model of the hUbA1-UbcH10 Quaternary Complex: In Silico and Experimental Analysis of the Protein-Protein Interactions between E1, E2 and Ubiquitin
UbcH10 is a component of the Ubiquitin Conjugation Enzymes (Ubc; E2) involved in the ubiquitination cascade controlling the cell cycle progression, whereby ubiquitin, activated by E1, is transferred through E2 to the target protein with the involvement of E3 enzymes. In this work we propose the first three dimensional model of the tetrameric complex formed by the human UbA1 (E1), two ubiquitin molecules and UbcH10 (E2), leading to the transthiolation reaction. The 3D model was built up by using an experimentally guided incremental docking strategy that combined homology modeling, protein-protein docking and refinement by means of molecular dynamics simulations. The structural features of the in silico model allowed us to identify the regions that mediate the recognition between the interacting proteins, revealing the active role of the ubiquitin crosslinked to E1 in the complex formation. Finally, the role of these regions involved in the E1–E2 binding was validated by designing short peptides that specifically interfere with the binding of UbcH10, thus supporting the reliability of the proposed model and representing valuable scaffolds for the design of peptidomimetic compounds that can bind selectively to Ubcs and inhibit the ubiquitylation process in pathological disorders
- …