5 research outputs found

    Evaluation Of Multielements In Human Blood Samples Using Synchrotron Radiation [avaliação De Multielementos Em Amostras De Sangue Humano Usando Sr-txrf]

    No full text
    Total-reflection X-ray fluorescence using synchrotron radiation (SR-TXRF) is a powerful analytical technique to study trace elements in biomedical samples. The aim of this study was to investigate possible changes in essential trace element concentrations caused by irradiation procedures. Fresh blood samples were obtained from the Dr. Eliel Figueiredo Laboratory, Rio de Janeiro. The samples were separated in two groups. The first was irradiated with doses of 1500, 2500 and 3000cGy, using a Gammacell 220 Exce irradiator, and the second was irradiated with doses of from 2 to 100 cGy, using gamma radiation in a Theraton 780 C irradiator. After irradiation, all samples were lyophilized to remove the water and then submitted to standard chemical digestion by adding nitric acid. All the measurements were carried out by X-Ray Fluorescence beamline at the Brazilian Synchrotron Light Laboratory (LNLS) in Campinas. While no positive association was found for variations in calcium, the variations in potassium were positively associated with the radiation dose for all analyzed samples. On the other hand, iron levels decreased for whole blood and plasma and zinc levels decreased only in whole blood as the dose increased.323195202Okuno, E., (1998) Radiação: Efeitos, Riscos E Benefícios, pp. 213-244. , Editora Harbra, São PauloKondo, S., (1993) Health Effects of Low-level Radiation, , Medical Physics Publishing, Kinki University Press, Madison, Osaka, JapanHosseinimehr, S., Zakaryaee, V., Froughizadeh, M., Oral oxymetholone reduces mortality induced by gamma irradiation in mice through stimulation of hematopoietic cells (2006) Mol Cell Biochem, 287 (2), pp. 193-199Moreira, S., Ficaris, M., Vives, A., Nascimento, F.V., Zucchi, O., Barroso, R., Heavy metals in groundwater using synchrotron radiation total reflection X-ray analysis (2006) Instrum Sci Technol, 34 (5), pp. 567-585Boumans, P., Klockenkämper, R., Total reflection X-ray fluorescence spectrometry (1989) Spectrochim Acta, 44 B, p. 433Klockenkämper, R., von Bohlen, A., Elemental analysis of environmental samples by total reflection X-ray fluorescence: A review (1996) X-ray Spectrom, 25, pp. 156-162Ayala, R., Alvarez, E., Wobrauschek, P., Direct determination of lead in whole human blood by total reflection X-ray fluorescence spectrometry (1991) Spectrochim Acta, 46 B, pp. 1429-1432Giauque, R.D., Goulding, F.S., Jaklevic, J.M., Pehl, R.H., Trace element determination with semiconductor detector X-ray spectrometers (1973) Anal Chem, 45 (4), pp. 671-681Greaves, E.D., Marcó, P.L.M., Rojas, A., Sajo-Bohus, L., Determination of platinum levels in serum and urine samples from pediatric cancer patients by TXRF (2000) X-ray Spectrom, 29 (5), pp. 349-35

    Morphophysiological development of Tabeluia serratifolia Vahl Nich. seeds Desenvolvimento morfofisiológico de sementes de ipê-amarelo (Tabeluia serratifolia Vahl Nich.)

    Get PDF
    Tabebuia serratifolia is used for the reforestation of degraded areas. Despite protection by law for permanent preservation, the species is in danger of extinction due to improper exploitation. With the objective to aid preservation and long term storage of the species we evaluated morphophysiological alterations of T. serratifolia seeds during the maturation process in order to identify markers that can be used for harvesting and storage. Fruits were collected at anthesis and seven developmental stages from trees growing in Lavras, state of Minas Gerais, Brazil. At each harvest, fruits and seeds were evaluated for color and size, moisture content, dry matter, internal morphology (by X-ray analysis), germination parameters (in vitro and ex vitro), as well as sugar and polyphenol content and heat resistant proteins. During the maturation process the initially green fruits changed to a brownish color and grew from a length of 7 to 18 cm; cracks appeared at the beginning of seed dispersal. The seed color varied from leaf-green to brownish and the length from 1 to 3 cm. The first indicatior of physiological maturity should be observed at 39 days post-anthesis, when variations the color and size of both fruits and seeds were observed. Increase in the moisture content, dry matter and germination, percentage of seeds and embryos in vitro, as well as a reduction in sugar content and LEA proteins were also observed. The physiological maturity of T. serratifolia seeds was reached 53 days after anthesis, coinciding with a maximum of dry matter accumulation and germination (and index of germination speed ex vitro), decrease in phenol levels, higher intensity of heat-resistant protein bands and the beginning of fruit opening.<br>Tabebuia serratifolia é utilizada no reflorestamento de áreas degradadas. Devido à sua exploração indevida, encontra-se em perigo de extinção, apesar de protegida por lei para preservação permanente. Foram investigadas as alterações morfofisiológicas de sementes de ipê-amarelo ao longo do desenvolvimento, para fins de auxiliar a conservação dessa espécie. Os frutos foram coletados a partir da antese, em sete estádios de desenvolvimento, em árvores localizadas na região de Lavras, MG, Brasil. Em cada coleta, as sementes foram submetidas às análises radiográficas e microscópicas, avaliando-se as colorações e tamanho, o grau de umidade e matéria seca tanto dos frutos como das sementes, a germinação in vitro e ex vitro, bem como os teores de açúcares, polifenóis e proteínas resistentes ao calor. Durante o desenvolvimento os frutos que inicialmente eram verdes passaram para amarronzados e o comprimento de 7 para 18 cm, apresentando fendas que iniciam a dispersão de suas sementes. As sementes tiveram sua cor variando de verde-folha a amarronzado e comprimento de 1 a 3 cm. As alterações iniciais indicativas da maturidade fisiológica de sementes de ipê-amarelo ocorreram a partir dos 39 dias após a antese, quando ocorreram variações na coloração, no tamanho de frutos e sementes e na visualização das estruturas internas, além de aumentos nos teores de água, matéria seca e porcentagem de germinação de sementes e embriões e ainda, redução dos açúcares redutores e das proteínas resistentes ao calor. A maturidade fisiológica das sementes de Tabebuia serratifolia é alcançada aos 53 dias após a antese, coincidindo com o acúmulo máximo de matéria seca, germinação (e índice de velocidade de germinação), além de decréscimo no teor de polifenóis e maior intensidade de bandas inidicadoras de proteínas resistentes ao calor e o início da abertura dos frutos
    corecore