14,736 research outputs found
Polyelectrolyte-colloid complexes: polarizability and effective interaction
We theoretically study the polarizability and the interactions of neutral
complexes consisting of a semi-flexible polyelectrolyte adsorbed onto an
oppositely charged spherical colloid. In the systems we studied, the bending
energy of the chain is small compared to the Coulomb energy and the chains are
always adsorbed on the colloid. We observe that the polarizability is large for
short chains and small electrical fields and shows a non-monotonic behavior
with the chain length at fixed charge density. The polarizability has a maximum
for a chain length equal to half of the circumference of the colloid. For long
chains we recover the polarizability of a classical conducting sphere. For
short chains, the existence of a permanent dipole moment of the complexes leads
to a van der Waal's-type long-range attraction between them. This attractive
interaction vanishes for long chains (i.e., larger than the colloidal size),
where the permanent dipole moment is negligible. For short distances the
complexes interact with a deep short-ranged attraction which is due to
energetic bridging for short chains and entropic bridging for long chains.
Exceeding a critical chain length eventually leads to a pure repulsion. This
shows that the stabilization of colloidal suspensions by polyelectrolyte
adsorption is strongly dependent on the chain size relative to the colloidal
size: for long chains the suspensions are always stable (only repulsive forces
between the particles), while for mid-sized and short chains there is
attraction between the complexes and a salting-out can occur.Comment: 13 pages, 14 figure
Counterions at charge-modulated substrates
We consider counterions in the presence of a single planar surface with a
spatially inhomogeneous charge distribution using Monte-Carlo simulations and
strong-coupling theory. For high surface charges, multivalent counterions, or
pronounced substrate charge modulation the counterions are laterally correlated
with the surface charges and their density profile deviates strongly from the
limit of a smeared-out substrate charge distribution, in particular exhibiting
a much increased laterally averaged density at the surface.Comment: 7 page
The Distribution of the Asymptotic Number of Citations to Sets of Publications by a Researcher or From an Academic Department Are Consistent With a Discrete Lognormal Model
How to quantify the impact of a researcher's or an institution's body of work
is a matter of increasing importance to scientists, funding agencies, and
hiring committees. The use of bibliometric indicators, such as the h-index or
the Journal Impact Factor, have become widespread despite their known
limitations. We argue that most existing bibliometric indicators are
inconsistent, biased, and, worst of all, susceptible to manipulation. Here, we
pursue a principled approach to the development of an indicator to quantify the
scientific impact of both individual researchers and research institutions
grounded on the functional form of the distribution of the asymptotic number of
citations. We validate our approach using the publication records of 1,283
researchers from seven scientific and engineering disciplines and the chemistry
departments at the 106 U.S. research institutions classified as "very high
research activity". Our approach has three distinct advantages. First, it
accurately captures the overall scientific impact of researchers at all career
stages, as measured by asymptotic citation counts. Second, unlike other
measures, our indicator is resistant to manipulation and rewards publication
quality over quantity. Third, our approach captures the time-evolution of the
scientific impact of research institutions.Comment: 20 pages, 11 figures, 3 table
Wigner-Crystal Formulation of Strong-Coupling Theory for Counter-ions Near Planar Charged Interfaces
We present a new analytical approach to the strong electrostatic coupling
regime (SC), that can be achieved equivalently at low temperatures, high
charges, low dielectric permittivity etc. Two geometries are analyzed in
detail: one charged wall first, and then, two parallel walls at small
distances, that can be likely or oppositely charged. In all cases, one type of
mobile counter-ions only is present, and ensures electroneutrality (salt free
case). The method is based on a systematic expansion around the ground state
formed by the two-dimensional Wigner crystal(s) of counter-ions at the
plate(s). The leading SC order stems from a single-particle theory, and
coincides with the virial SC approach that has been much studied in the last 10
years. The first correction has the functional form of the virial SC
prediction, but the prefactor is different. The present theory is free of
divergences and the obtained results, both for symmetrically and asymmetrically
charged plates, are in excellent agreement with available data of Monte-Carlo
simulations under strong and intermediate Coulombic couplings. All results
obtained represent relevant improvements over the virial SC estimates. The
present SC theory starting from the Wigner crystal and therefore coined Wigner
SC, sheds light on anomalous phenomena like the counter-ion mediated
like-charge attraction, and the opposite-charge repulsion
Effects of rotation on the evolution and asteroseismic properties of red giants
The influence of rotation on the properties of red giants is studied in the
context of the asteroseismic modelling of these stars. While red giants exhibit
low surface rotational velocities, we find that the rotational history of the
star has a large impact on its properties during the red giant phase. In
particular, for stars massive enough to ignite He burning in non-degenerate
conditions, rotational mixing induces a significant increase of the stellar
luminosity and shifts the location of the core helium burning phase to a higher
luminosity in the HR diagram. This of course results in a change of the seismic
properties of red giants at the same evolutionary state. As a consequence the
inclusion of rotation significantly changes the fundamental parameters of a red
giant star as determined by performing an asteroseismic calibration. In
particular rotation decreases the derived stellar mass and increases the age.
Depending on the rotation law assumed in the convective envelope and on the
initial velocity of the star, non-negligible values of rotational splitting can
be reached, which may complicate the observation and identification of
non-radial oscillation modes for red giants exhibiting moderate surface
rotational velocities. By comparing the effects of rotation and overshooting,
we find that the main-sequence widening and the increase of the H-burning
lifetime induced by rotation (Vini=150 km/s) are well reproduced by
non-rotating models with an overshooting parameter of 0.1, while the increase
of luminosity during the post-main sequence evolution is better reproduced by
non-rotating models with overshooting parameters twice as large. This is due to
the fact that rotation not only increases the size of the convective core but
also changes the chemical composition of the radiative zone.Comment: 9 pages, 13 figures, accepted for publication in A&
Analysis of the velocity field of granular hopper flow
We report the analysis of radial characteristics of the flow of granular
material through a conical hopper. The discharge is simulated for various
orifice sizes and hopper opening angles. Velocity profiles are measured along
two radial lines from the hopper cone vertex: along the main axis of the cone
and along its wall. An approximate power law dependence on the distance from
the orifice is observed for both profiles, although differences between them
can be noted. In order to quantify these differences, we propose a Local Mass
Flow index that is a promising tool in the direction of a more reliable
classification of the flow regimes in hoppers
- …