4,385 research outputs found

    Tidal damping of the mutual inclination in hierachical systems

    Full text link
    Hierarchical two-planet systems, in which the inner body's semi-major axis is between 0.1 and 0.5 AU, usually present high eccentricity values, at least for one of the orbits. As a result of the formation process, one may expect that planetary systems with high eccentricities also have high mutual inclinations. However, here we show that tidal effects combined with gravitational interactions damp the initial mutual inclination to modest values in timescales that are shorter than the age of the system. This effect is not a direct consequence of tides on the orbits, but it results from a secular forcing of the inner planet's flattening. We then conclude that these hierarchical planetary systems are unlikely to present very high mutual inclinations, at least as long as the orbits remain outside the Lidov-Kozai libration areas. The present study can also be extended to systems of binary stars and to planet-satellite systems.Comment: 16 pages, 13 figure

    Interaction-induced chiral p_x \pm i p_y superfluid order of bosons in an optical lattice

    Full text link
    The study of superconductivity with unconventional order is complicated in condensed matter systems by their extensive complexity. Optical lattices with their exceptional precision and control allow one to emulate superfluidity avoiding many of the complications of condensed matter. A promising approach to realize unconventional superfluid order is to employ orbital degrees of freedom in higher Bloch bands. In recent work, indications were found that bosons condensed in the second band of an optical chequerboard lattice might exhibit p_x \pm i p_y order. Here we present experiments, which provide strong evidence for the emergence of p_x \pm i p_y order driven by the interaction in the local p-orbitals. We compare our observations with a multi-band Hubbard model and find excellent quantitative agreement

    Momentum Space Regularizations and the Indeterminacy in the Schwinger Model

    Full text link
    We revisited the problem of the presence of finite indeterminacies that appear in the calculations of a Quantum Field Theory. We investigate the occurrence of undetermined mathematical quantities in the evaluation of the Schwinger model in several regularization scenarios. We show that the undetermined character of the divergent part of the vacuum polarization tensor of the model, introduced as an {\it ansatz} in previous works, can be obtained mathematically if one introduces a set of two parameters in the evaluation of these quantities. The formal mathematical properties of this tensor and their violations are discussed. The analysis is carried out in both analytical and sharp cutoff regularization procedures. We also show how the Pauli Villars regularization scheme eliminates the indeterminacy, giving a gauge invariant result in the vector Schwinger model.Comment: 10 pages, no figure

    Local density of states of electron-crystal phases in graphene in the quantum Hall regime

    Full text link
    We calculate, within a self-consistent Hartree-Fock approximation, the local density of states for different electron crystals in graphene subject to a strong magnetic field. We investigate both the Wigner crystal and bubble crystals with M_e electrons per lattice site. The total density of states consists of several pronounced peaks, the number of which in the negative energy range coincides with the number of electrons M_e per lattice site, as for the case of electron-solid phases in the conventional two-dimensional electron gas. Analyzing the local density of states at the peak energies, we find particular scaling properties of the density patterns if one fixes the ratio nu_N/M_e between the filling factor nu_N of the last partially filled Landau level and the number of electrons per bubble. Although the total density profile depends explicitly on M_e, the local density of states of the lowest peaks turns out to be identical regardless the number of electrons M_e. Whereas these electron-solid phases are reminiscent to those expected in the conventional two-dimensional electron gas in GaAs heterostructures in the quantum Hall regime, the local density of states and the scaling relations we highlight in this paper may be, in graphene, directly measured by spectroscopic means, such as e.g. scanning tunneling microscopy.Comment: 8 pages, 7 figures; minor correction

    Chern-Simons theory of multi-component quantum Hall systems

    Full text link
    The Chern-Simons approach has been widely used to explain fractional quantum Hall states in the framework of trial wave functions. In the present paper, we generalise the concept of Chern-Simons transformations to systems with any number of components (spin or pseudospin degrees of freedom), extending earlier results for systems with one or two components. We treat the density fluctuations by adding auxiliary gauge fields and appropriate constraints. The Hamiltonian is quadratic in these fields and hence can be treated as a harmonic oscillator Hamiltonian, with a ground state that is connected to the Halperin wave functions through the plasma analogy. We investigate several conditions on the coefficients of the Chern-Simons transformation and on the filling factors under which our model is valid. Furthermore, we discuss several singular cases, associated with symmetric states.Comment: 11 pages, shortened version, accepted for publication in Phys. Rev.

    The Weibull-Geometric distribution

    Full text link
    In this paper we introduce, for the first time, the Weibull-Geometric distribution which generalizes the exponential-geometric distribution proposed by Adamidis and Loukas (1998). The hazard function of the last distribution is monotone decreasing but the hazard function of the new distribution can take more general forms. Unlike the Weibull distribution, the proposed distribution is useful for modeling unimodal failure rates. We derive the cumulative distribution and hazard functions, the density of the order statistics and calculate expressions for its moments and for the moments of the order statistics. We give expressions for the R\'enyi and Shannon entropies. The maximum likelihood estimation procedure is discussed and an algorithm EM (Dempster et al., 1977; McLachlan and Krishnan, 1997) is provided for estimating the parameters. We obtain the information matrix and discuss inference. Applications to real data sets are given to show the flexibility and potentiality of the proposed distribution

    Calibration of parameters in Dynamic Energy Budget models using Direct-Search methods

    Get PDF
    Dynamic Energy Budget (DEB) theory aims to capture the quantitative aspects of metabolism at the individual level, for all species. The parametrization of a DEB model is based on information obtained through the observation of natural populations and experimental research. Currently the DEB toolbox estimates these parameters using the Nelder–Mead Simplex method, a derivative-free direct-search method. However, this procedure presents some limitations regarding convergence and how to address constraints. Framed in the calibration of parameters in DEB theory, this work presents a numerical comparison between the Nelder–Mead Simplex method and the SID-PSM algorithm, a Directional Direct-Search method for which convergence can be established both for unconstrained and constrained problems. A hybrid version of the two methods, named as Simplex Directional Direct-Search, provides a robust and efficient algorithm, able to solve the constrained optimization problems resulting from the parametrization of the biological models.authorsversionpublishe
    corecore