research

Chern-Simons theory of multi-component quantum Hall systems

Abstract

The Chern-Simons approach has been widely used to explain fractional quantum Hall states in the framework of trial wave functions. In the present paper, we generalise the concept of Chern-Simons transformations to systems with any number of components (spin or pseudospin degrees of freedom), extending earlier results for systems with one or two components. We treat the density fluctuations by adding auxiliary gauge fields and appropriate constraints. The Hamiltonian is quadratic in these fields and hence can be treated as a harmonic oscillator Hamiltonian, with a ground state that is connected to the Halperin wave functions through the plasma analogy. We investigate several conditions on the coefficients of the Chern-Simons transformation and on the filling factors under which our model is valid. Furthermore, we discuss several singular cases, associated with symmetric states.Comment: 11 pages, shortened version, accepted for publication in Phys. Rev.

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 14/10/2017
    Last time updated on 17/03/2019