17 research outputs found

    Hard-Sphere Fluids in Contact with Curved Substrates

    Full text link
    The properties of a hard-sphere fluid in contact with hard spherical and cylindrical walls are studied. Rosenfeld's density functional theory (DFT) is applied to determine the density profile and surface tension γ\gamma for wide ranges of radii of the curved walls and densities of the hard-sphere fluid. Particular attention is paid to investigate the curvature dependence and the possible existence of a contribution to γ\gamma that is proportional to the logarithm of the radius of curvature. Moreover, by treating the curved wall as a second component at infinite dilution we provide an analytical expression for the surface tension of a hard-sphere fluid close to arbitrary hard convex walls. The agreement between the analytical expression and DFT is good. Our results show no signs for the existence of a logarithmic term in the curvature dependence of γ\gamma.Comment: 15 pages, 6 figure

    Microwave heating, isothermal sintering, and mechanical properties of powder metallurgy titanium and titanium alloys

    Get PDF
    This article presents a detailed assessment of microwave (MW) heating, isothermal sintering, and the resulting tensile properties of commercially pure Ti (CP-Ti), Ti-6Al-4V, and Ti-10V-2Fe-3Al (wt pct), by comparison with those fabricated by conventional vacuum sintering. The potential of MW sintering for titanium fabrication is evaluated accordingly. Pure MW radiation is capable of heating titanium powder to ≥1573 K (1300 C), but the heating response is erratic and difficult to reproduce. In contrast, the use of SiC MW susceptors ensures rapid, consistent, and controllable MW heating of titanium powder. MW sintering can consolidate CP-Ti and Ti alloys compacted from -100 mesh hydride-dehydride (HDH) Ti powder to ~95.0 pct theoretical density (TD) at 1573 K (1300 C), but no accelerated isothermal sintering has been observed over conventional practice. Significant interstitial contamination occurred from the Al2O3-SiC insulation-susceptor package, despite the high vacuum used (≤4.0 × 10-3 Pa). This leads to erratic mechanical properties including poor tensile ductility. The use of Ti sponge as impurity (O, N, C, and Si) absorbers can effectively eliminate this problem and ensure good-to-excellent tensile properties for MW-sintered CP-Ti, Ti-10V-2Fe-3Al, and Ti-6Al-4V. The mechanisms behind various observations are discussed. The prime benefit of MW sintering of Ti powder is rapid heating. MW sintering of Ti powder is suitable for the fabrication of small titanium parts or titanium preforms for subsequent thermomechanical processing

    Seeding uniformity for vacuum precision seeders Uniformidade de semeaduras para semeadeiras de precisão a vácuo

    Get PDF
    The performance of three vacuum precision seeders was investigated in a field study. Seeding uniformity was determined in three different within-row distances: 14, 18 and 21 cm. The seeders were operated at 1.8, 3.6, 5.4 and 7.2 km h-1. Successive seed spacing along of 3 m of row was measured in three replications on each row. For evaluating the seeding uniformity of seeders, seed spacings were analyzed using the methods (MISS, MULT, QFI and PREC). There were no differences between seeders. For P < 0.01, operating speed affected MISS and QFI values, and the within-row seed spacing affected MULT and PREC values. The best operating speed was 1.8 km h-1 because of the highest QFI value (88.5%). There was no difference between 1.8 and 3.6 km h-1. The speeds, 1.8 and 3.6 km h-1, were different from 5.4 and 7.2 km h-1. The best within-row distance was 18 cm because the QFI value was higher than those of 14 and 20 cm, 86.9%, 82.0% and 81.8%, respectively. The best PREC value was obtained for 21 cm within-row distance (17.4%). PREC values were acceptable for precision seeding in all trials.<br>O comportamento de três semeadeiras de precisão a vácuo foi investigado em um estudo de campo. A uniformidade de semeadura foi determinada para três distâncias de entrelinha: 14, 18 e 21 cm. As semeadeiras operaram nas velocidades de 1,8; 3,6; 5,4 e 7,2 km h-1. O espaçamento entre sementes sucessivas foi feito ao longo de 3 m de linha, com três repetições em cada linha. Para avaliar a uniformidade, os espaçamentos entre sementes foram analisados usando os métodos (MISS, MULT, QFI e PREC) e nos resultados não foi achada diferença entre semeadeiras. Para P < 0,001 a velocidade de operação afetou MISS e QFI e o espaçamento entre linhas afetou MULT e PREC. A melhor velocidade de operação foi de 1,8 km h-1 devido ao seu mais alto valor de QFI (88,5%). Não houve diferença entre as velocidades de 1,8 e 3,6 km h-1, mas elas foram diferentes das velocidades 5,4 e 7,2 km h-1. A melhor distância entre linhas foi de 18 cm, pois seu QFI foi maior em relação à 14 e 20 cm, 86,9%, 82,0% e 81,8%, respectivamente. O melhor PREC foi obtido para 21 cm de entrelinha (17,4) e os valores de PREC foram aceitáveis para todos experimentos
    corecore