483 research outputs found

    A Five Dimensional Perspective on Many Particles in the Snyder basis of Double Special Relativity

    Full text link
    After a brief summary of Double Special Relativity (DSR), we concentrate on a five dimensional procedure, which consistently introduce coordinates and momenta in the corresponding four-dimensional phase space, via a Hamiltonian approach. For the one particle case, the starting point is a de Sitter momentum space in five dimensions, with an additional constraint selected to recover the mass shell condition in four dimensions. Different basis of DSR can be recovered by selecting specific gauges to define the reduced four dimensional degrees of freedom. This is shown for the Snyder basis in the one particle case. We generalize the method to the many particles case and apply it again to this basis. We show that the energy and momentum of the system, given by the dynamical variables that are generators of translations in space and time and which close the Poincar\'e algebra, are additive magnitudes. From this it results that the rest energy (mass) of a composite object does not have an upper limit, as opposed to a single component particle which does.Comment: 12 pages, no figures, AIP Conf. Pro

    Duality for massive spin two theories in arbitrary dimensions

    Full text link
    Using the parent Lagrangian approach we construct a dual formulation, in the sense originally proposed by Curtright and Freund, of a massive spin two Fierz-Pauli theory in arbitrary dimensions DD. This is achieved in terms of a mixed symmetry tensor TA[B1B2...BD2]T_{A[B_{1}B_{2}... B_{D-2}]}, without the need of auxiliary fields. The relation of this method with an alternative formulation based on a gauge symmetry principle proposed by Zinoviev is elucidated. We show that the latter formulation in four dimensions, with a given gauge fixing together with a definite sequence of auxiliary fields elimination via their equations of motion, leads to the parent Lagrangian already considered by West completed by a Fierz-Pauli mass term, which in turns yields the Curtright-Freund action. This motivates our generalization to arbitrary dimensions leading to the corresponding extension of the four dimensional result. We identify the transverse true degrees of freedom of the dual theory and verify that their number is in accordance with those of the massive Fierz-Pauli field.Comment: 14 pages, no figures, revtex 4. Some new comments and explanations have been added and the notation homogeneize

    Reality and causality in quantum gravity modified electrodynamics

    Full text link
    We present a general description of the propagation properties of quantum gravity modified electrodynamics characterized by constitutive relations up to second order in the correction parameter. The effective description corresponds to an electrodynamics in a dispersive and absorptive non-local medium, where the Green functions and the refraction indices can be explicitly calculated. The reality of the electromagnetic field together with the requirement of causal propagation in a given referrence frame leads to restrictions in the form of such refraction indices. In particular, absorption must be present in all cases and, contrary to the usual assumption, it is the dominant aspect in those effective models which exhibit linear effects in the correction parameter not related to birefringence. In such a situation absorption is linear while propagation is quadratical in the correction parameter.Comment: 15 pages, LaTex, minor changes to clarify some points, version accepted for publicatio

    Emergent electrodynamics from the Nambu model for spontaneous Lorentz symmetry breaking

    Get PDF
    After imposing the Gauss law constraint as an initial condition upon the Hilbert space of the Nambu model, in all its generic realizations, we recover QED in the corresponding non-linear gauge A_{\mu}A^{\mu}=n^{2}M^{2}. Our result is non-perturbative in the parameter M for n^{2}\neq 0 and can be extended to the n^{2}=0 case. This shows that in the Nambu model, spontaneous Lorentz symmetry breaking dynamically generates gauge invariance, provided the Gauss law is imposed as an initial condition. In this way electrodynamics is recovered, with the photon being realized as the Nambu-Goldstone modes of the spontaneously broken symmetry, which finally turns out to be non-observableComment: 17 page

    Mechanical Response of Hollow Metallic Nanolattices: Combining Structural and Material Size Effects

    Get PDF
    Ordered cellular solids have higher compressive yield strength and stiffness compared to stochastic foams. The mechanical properties of cellular solids depend on their relative density and follow structural scaling laws. These scaling laws assume the mechanical properties of the constituent materials, like modulus and yield strength, to be constant and dictate that equivalent-density cellular solids made from the same material should have identical mechanical properties. We present the fabrication and mechanical properties of three-dimensional hollow gold nanolattices whose compressive responses demonstrate that strength and stiffness vary as a function of geometry and tube wall thickness. All nanolattices had octahedron geometry, a constant relative density, ρ ∼ 5%, a unit cell size of 5–20 μm, and a constant grain size in the Au film of 25–50 nm. Structural effects were explored by increasing the unit cell angle from 30 deg to 60 deg while keeping all other parameters constant; material size effects were probed by varying the tube wall thickness, t, from 200 nm to 635 nm, at a constant relative density and grain size. In situ uniaxial compression experiments revealed an order of magnitude increase in yield stress and modulus in nanolattices with greater lattice angles, and a 150% increase in the yield strength without a concomitant change in modulus in thicker-walled nanolattices for fixed lattice angles. These results imply that independent control of structural and material size effects enables tunability of mechanical properties of three-dimensional architected metamaterials and highlight the importance of material, geometric, and microstructural effects in small-scale mechanics

    Lorentz violating electrodynamics

    Full text link
    After summarizing the most interesting results in the calculation of synchrotron radiation in the Myers-Pospelov effective model for Lorentz invariance violating (LIV) electrodynamics, we present a general unified way of describing the radiation regime of LIV electrodynamics which include the following three different models : Gambini-Pullin, Ellis et al. and Myers-Pospelov. Such unification reduces to the standard approach of radiation in a dispersive and absortive (in general) medium with a given index of refraction. The formulation is presented up to second order in the LIV parameter and it is explicitly applied to the synchrotron radiation case.Comment: 11 pages, extended version of the talk given by L.F. Urrutia in the VI Mexican School: Approaches to Quantum Gravity, Playa del Carmen, Mexico, Nov. 2004. Minor chages in the text and added reference

    A new method for the spectroscopic identification of stellar non-radial pulsation modes. II. Mode identification of the Delta Scuti star FG Virginis

    Get PDF
    We present a mode identification based on new high-resolution time-series spectra of the non-radially pulsating Delta Scuti star FG~Vir (HD 106384, V = 6.57, A5V). From 2002 February to June a global Delta Scuti Network (DSN) campaign, utilizing high-resolution spectroscopy and simultaneous photometry has been conducted for FG~Vir in order to provide a theoretical pulsation model. In this campaign we have acquired 969 Echelle spectra covering 147 hours at six observatories. The mode identification was carried out by analyzing line profile variations by means of the Fourier parameter fit method, where the observational Fourier parameters across the line are fitted with theoretical values. This method is especially well suited for determining the azimuthal order m of non-radial pulsation modes and thus complementary with the method of Daszynska-Daszkiewicz (2002) which does best at identifying the degree l. 15 frequencies between 9.2 and 33.5 c/d were detected spectroscopically. We determined the azimuthal order m of 12 modes and constrained their harmonic degree l. Only modes of low degree (l <= 4) were detected, most of them having axisymmetric character mainly due to the relatively low projected rotational velocity of FG Vir. The detected non-axisymmetric modes have azimuthal orders between -2 and 1. We derived an inclination of 19 degrees, which implies an equatorial rotational rate of 66 km/s.Comment: 14 pages, 26 figure

    Candidaturas independientes, procesos electorales 2015-2016

    Get PDF
    El presente trabajo tiene por objetivo analizar el desarrollo que ha tenido la figura de las candidaturas independientes en los últimos años en México, con el objetivo de reflejar su situación en el año 2018. Se realizó una investigación sobre el desarrollo y consolidación de las candidaturas independientes a partir del siglo XIX. Es claro que las candidaturas independientes han logrado una mayor popularidad en nuestro país dada la gran inconformidad de la sociedad ante el monopolio y la falta de representación política de los partidos políticos que han gobernado México. Es precisamente la inconformidad social generada por la inestabilidad política, económica y social, por el incremento insolente de corrupción, crimen, violencia e inseguridad, así como una clara ingobernabilidad de los partidos políticos lo que ha llevado a la sociedad mexicana a cuestionar a los partidos políticos actuales
    corecore