11,136 research outputs found

    Construction of a non-standard quantum field theory through a generalized Heisenberg algebra

    Get PDF
    We construct a Heisenberg-like algebra for the one dimensional quantum free Klein-Gordon equation defined on the interval of the real line of length LL. Using the realization of the ladder operators of this type Heisenberg algebra in terms of physical operators we build a 3+1 dimensional free quantum field theory based on this algebra. We introduce fields written in terms of the ladder operators of this type Heisenberg algebra and a free quantum Hamiltonian in terms of these fields. The mass spectrum of the physical excitations of this quantum field theory are given by n2π2/L2+mq2\sqrt{n^2 \pi^2/L^2+m_q^2}, where n=1,2,...n= 1,2,... denotes the level of the particle with mass mqm_q in an infinite square-well potential of width LL.Comment: Latex, 16 page

    Comportamento do fósforo em solos argiluviados da Região do Alentejo: sorção de fosfato

    Get PDF
    O Encontro decorreu na Universidade do Algarve.O poster apresenta os resultaos de um estudo sobre o comportamento do fósforo em solos argiluviados da Região do Alentejo

    Phosphate desorption in luvisols and solonetz from a Mediterranean region

    Get PDF
    Poster apresentado no 6th International Phosphorus Workshop, que decorreu em Sevilha de 27 de Setembro a 1 de Outubro de 2010.Transfer of P from soil to water is controlled by the P retention capacity in the solid phase, namely by the equilibrium between adsorbed and precipitated forms. Desorption of P and/or phosphate dissolution govern the amount of P released into drainage water, runoff or freshwater. Soil P evaluated by Olsen method showed a strong correlation with the capacity of soil to desorb P and, within certain limits, to the transfer of P to water. This transfer of P relates to losses that occur either in surface horizons, or in subsurface horizons (to drainage water, to runoff or by soil erosion to freshwater)

    Gibbs sampling detection for large MIMO and MTC uplinks with adaptive modulation

    Get PDF
    Wireless networks beyond 5G will mostly be serving myriads of sensors and other machine-type communications (MTC), with each device having different requirements in respect to latency, error rate, energy consumption, spectral efficiency or other specifications. Multiple-input multiple-output (MIMO) systems remain a central technology towards 6G, and in cases where massive antenna arrays or cell-free networks are not possible to deploy and only moderately large antenna arrays are allowed, the detection problem at the base-station cannot rely on zero-forcing or matched filters and more complex detection schemes have to be used. The main challenge is to find low complexity, hardware feasible methods that are able to attain near optimal performance. Randomized algorithms based on Gibbs sampling (GS) were proven to perform very close to the optimal detection, even for moderately large antenna arrays, while yielding an acceptable number of operations. However, their performance is highly dependent on the chosen “temperature” parameter (TP). In this paper, we propose and study an optimized variant of the GS method, denoted by triple mixed GS, and where three distinct values for the TP are considered. The method exhibits faster convergence rates than the existing ones in the literature, hence requiring fewer iterations to achieve a target bit error rate. The proposed detector is suitable for symmetric large MIMO systems, however the proposed fixed complexity detector is highly suitable to spectrally efficient adaptively modulated MIMO (AM-MIMO) systems where different types of devices upload information at different bit rates or have different requirements regarding spectral efficiency. The proposed receiver is shown to attain quasi-optimal performance in both scenarios.info:eu-repo/semantics/publishedVersio

    Porto Oscillation Code (POSC)

    Full text link
    The Porto Oscillation Code (POSC) has been developed in 1995 and improved over the years, with the main goal of calculating linear adiabatic oscillations for models of solar-type stars. It has also been used to estimate the frequencies and eigenfunctions of stars from the pre-main sequence up to the sub-giant phase, having a mass between 0.8 and 4 solar masses. The code solves the linearised perturbation equations of adiabatic pulsations for an equilibrium model using a second order numerical integration method. The possibility of using Richardson extrapolation is implemented. Several options for the surface boundary condition can be used. In this work we briefly review the key ingredients of the calculations, namely the equations, the numerical scheme and the output.Comment: Accepted for publication in Astrophysics and Space Science

    Multiframe coded computation for distributed uplink channel decoding

    Get PDF
    The latest 5G technology in wireless communication has led to an increasing demand for higher data rates and low latencies. The overall latency of the system in a cloud radio access network is greatly affected by the decoding latency in the uplink channel. Various proposed solutions suggest using network function virtualization (NFV). NFV is the process of decoupling the network functions from hardware appliances. This provides the exibility to implement distributed computing and network coding to effectively reduce the decoding latency and improve the reliability of the system. To ensure the system is cost effective, commercial off the shelf (COTS) devices are used, which are susceptible to random runtimes and server failures. NFV coded computation has shown to provide a significant improvement in straggler mitigation in previous work. This work focuses on reducing the overall decoding time while improving the fault tolerance of the system. The overall latency of the system can be reduced by improving the computation efficiency and processing speed in a distributed communication network. To achieve this, multiframe NFV coded computation is implemented, which exploits the advantage of servers with different runtimes. In multiframe coded computation, each server continues to decode coded frames of the original message until the message is decoded. Individual servers can make up for straggling servers or server failures, increasing the fault tolerance and network recovery time of the system. As a consequence, the overall decoding latency of a message is significantly reduced. This is supported by simulation results, which show the improvement in system performance in comparison to a standard NFV coded system
    corecore