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Abstract: Wireless networks beyond 5G will mostly be serving myriads of sensors and other machine-
type communications (MTC), with each device having different requirements in respect to latency,
error rate, energy consumption, spectral efficiency or other specifications. Multiple-input multiple-
output (MIMO) systems remain a central technology towards 6G, and in cases where massive antenna
arrays or cell-free networks are not possible to deploy and only moderately large antenna arrays
are allowed, the detection problem at the base-station cannot rely on zero-forcing or matched filters
and more complex detection schemes have to be used. The main challenge is to find low complexity,
hardware feasible methods that are able to attain near optimal performance. Randomized algorithms
based on Gibbs sampling (GS) were proven to perform very close to the optimal detection, even
for moderately large antenna arrays, while yielding an acceptable number of operations. However,
their performance is highly dependent on the chosen “temperature” parameter (TP). In this paper,
we propose and study an optimized variant of the GS method, denoted by triple mixed GS, and
where three distinct values for the TP are considered. The method exhibits faster convergence rates
than the existing ones in the literature, hence requiring fewer iterations to achieve a target bit error
rate. The proposed detector is suitable for symmetric large MIMO systems, however the proposed
fixed complexity detector is highly suitable to spectrally efficient adaptively modulated MIMO
(AM-MIMO) systems where different types of devices upload information at different bit rates or
have different requirements regarding spectral efficiency. The proposed receiver is shown to attain
quasi-optimal performance in both scenarios.

Keywords: Gibbs sampling; large MIMO detection; adaptively modulated MIMO; MTC

1. Introduction

Wireless networks are heading towards their 6th generation (6G), shifting from the
scenario where most users were mobile phones, to one where a paraphernalia of sensors
and other devices will lead to pervasive machine-type communications (MTC), which will
constitute the dominant type of wireless links [1–3]. Many of these devices will be extremely
power constrained, with some of them relying on wireless energy transfer to operate [4],
and therefore they can only transmit up to a certain power, or during some maximum time
during which they have to transmit a short block of data in the shortest time possible to
signal an event. These situations imply that at any given time, different devices will be
using different modulation orders, which will have to be taken into consideration by the
central receiver. On top of that physical-layer, modern coding schemes based on fountain
codes or different flavors of network coding can be used to facilitate the data collection [5].
Most proposals for the next generation rely on the existence of a massive MIMO base-station
(BS) [6] (today widely considered to be systems with larger than 64 antenna elements [7],
(p. 155)) or cell-free networks [8], and they rely on asymmetric MIMO cases, where the
number of terminals is much lower than the number of antenna elements at the BS (or the
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number of receiving antenna elements in a cell-free network). The conditions for such types
of operation may not always exist, for example in heavily loaded cells (with a number of
terminals approaching the number of antennas at the BS), or when the dimensions of the
antenna arrays are physically constrained, particularly if using low-frequency carriers.

In the case of an uplink MIMO channel, when the number of (single-antenna) users M
is far less than the number of BS antennas N, linear processing techniques, such as zero-
forcing (ZF) or minimum mean-square error (MMSE), attain near-optimal performance [9],
and detectors based on Neumann series expansions can further reduce that complexity [10].
However, when M→ N, i.e., as the ratio of the number of antenna elements on both sides of
a MIMO system gets closer to 1, linear detection is well-known to severely degrade [11,12].
It is therefore important to use detection methods that perform close to maximum likelihood
(ML), i.e., exhaustive search, while yielding low complexity. Despite being optimal, ML
and sphere decoding detection (SD) methods are prohibitive in large dimensions due
to their exponential complexity [13]. Other possible alternatives are lattice-reduction-
aided (LRA) methods [14], punctured SD-based techniques [15], or trellis-based detection
approximating the lattice problem by one with a trellis representation [16], all of which hold
performance-complexity trade-offs that have been proven to be acceptable for symmetric
large MIMO systems.

To address the need to serving devises with widely different requirements (in terms
of bit rate, error probability, and spectral efficiency), adaptively modulated MIMO (AM-
MIMO) systems, where each user has the possibility of adjusting the utilized modulation
scheme according to its channel conditions and rate requirements, are of practical inter-
est [17,18]. The great advantage of these schemes over conventional fixed-MIMO are their
high spectral efficiencies, whilst keeping bit error rates (BER) close to a given target [19].
However, finding efficient detection algorithms for such systems has been the focus of
some literature; for example, in [20], the authors proposed SD-based methods for optimal
decoding of AM-MIMO, even though it is not a scalable solution for large MIMO due to
the rising complexity that SD entails.

Advanced statistical methods, such as Markov chain Monte Carlo (MCMC), have
already shown significant gains in signal processing for wireless communications. In par-
ticular, Gibbs sampling (GS) [21] (section 11-3), which is the particular MCMC technique
considered in this paper, can attain ML-like performance, provided the algorithm is run
for a sufficient long time [22]. Even so, the conventional GS technique suffers from the
so-called “stalling problem”, meaning that for high values of signal to noise ratio (SNR),
the BER performance does not improve any further [23]. Gibbs sampling-based techniques
have been considered for large symmetric MIMO in recent years [24–29]. In this paper,
capitalizing on these previous works that use multiple restarts [23,27], we propose a variant
of the GS method to perform detection in both large MIMO (with N

M > 0.75, as in [27])
and AM-MIMO systems in particular, making use of the findings in [22] regarding the
adaptation of the so-called “temperature” parameter (TP).

The core idea of the GS technique proposed, and corresponding to the main contribu-
tion of this paper, is that at each iteration of the Gibbs sampler, the alternative approach
picks one of three possible TP according to a given probability distribution. The TP values
and corresponding probability distribution are chosen such that the stalling problem is
circumvented, whilst keeping convergence rates high. Numerical results confirm that
the proposed variant outperforms both aforementioned works, and that by using a multi-
ple restarts (MR) approach, quasi-optimal performance can be obtained without further
increasing processing time.

Following this introductory section, the paper proceeds with the definition of the
MIMO channel model in Section 2, which makes use of the mapping of the MIMO commu-
nication problem in the complex-domain to one in the real-domain, which can be tackled
by the GS method. Section 3 starts by explaining how the GS technique can be applied in
solving the MIMO detection problem and shows its pitfalls when a plain GS is used without
additional measures; the section then shows how multiple-restarts can be one important
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additional measure to alleviate those problems. Because the performance obtained via GS
detection is highly dependent on the choice of the TP, Section 4 presents some ways of
choosing the TP. In Section 5, the central proposal of the paper emerges by probabilistically
combining different TP along the iterations of the GS detection process, taking into consid-
eration the observations made in the previous sections. Besides symmetric large-MIMO
systems with homogeneous constellations in the antennas, the proposed GS detection
is directly extendable to the AM-MIMO systems that naturally arise in MTC scenarios,
and that extension is presented in Section 6. In Section 7, we present numerical results that
assess the performance of the proposal, and the paper ends by presenting the conclusions
in the Section 8.

2. System Model

Consider a N×M uplink large MIMO model, where each one of the M single antenna
devices transmit a symbol from a complex mk-QAM alphabet, denoted by A(c), and where
mk corresponds to the constellation size of the kth user. The possible transmit symbols by
the kth user are taken from anMk-QAM alphabet A(c), such that A(c) = A+ jA, where
A = {− log2

√
Mk + 1, ...,−1, 1, log2

√
Mk − 1}. Let xm ∈ A(c) denote the transmitted

symbol from user k and x = [x1, ..., xM]T the vector containing the M complex symbols.
The transmitted symbols from each user (or antenna) are assumed to have normalized
energy equal to one, that is E{xHx} = M, where xH is the Hermitian transpose of the
virtual vector transmitted by the terminals. The uncoded transmitted signal x passes
through a channel (known at the receiving BS), characterized by the matrix H ∈ CN×M and
is received by a BS with N antenna elements. Thus, the received signal at the base station y
can be expressed as:

y = gH(c)x + n, (1)

where g =
√

SNR
M corresponds to the average gain of the channel and n represents the

additive noise at the receive BS. Both entries of H and n are i.i.d. random variables taken
from a complex normal distribution CN (0, 1). For implementation purposes, the complex-
valued system model is converted into a real-valued one (as in [11] or [23])[

R{y}
I{y}

]
=

[
R{H(c)} −I{H(c)}
I{H(c)} R{H(c)}

][
R{x}
I{x}

]
+

[
R{n}
I{n}

]
, (2)

therefore, designating n = 2M = 2N, the real channel matrix H ∈ Rn×n, while both vectors
x, n ∈ Rn×1 and the complex constellationA(c) is now a real-valued set of symbols denoted
by A.

3. Gibbs Sampling for MIMO Detection
3.1. Conventional Gibbs Sampling

When applying MIMO detection via GS, a reversible Markov chain is assumed, so
that asymptotic convergence to the optimal solution is guaranteed. In other words, if the
detector is run for a sufficiently long time, there is a certain positive probability that the
optimal solution is visited.

Upon receiving y, the BS starts the detection procedure. Under the assumption that
the various transmitted symbols are uncorrelated, retrieving x from (1) can be regarded as
a closest vector problem (CVP) in a lattice where the received symbol is one of the lattice
points perturbed by a Gaussian distribution [11]. At the initial time instant t = 0, an n-
dimensional starting candidate x(0) is given to the MCMC detector, which then performs
an “ingenious” walk over the real alphabet An in search of the optimal solution to the
following problem:

x̂ = arg min
x∈An

||y− gHx||. (3)
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In particular, the n-dimensional lattice formed by H = gH (known as the lattice basis)
is Λ = {Hx : x ∈ Zn}. Then, one can define the Gaussian function centered at y ∈ Rn for
standard deviation σ2

n = 1 > 0 as

ρ(Hx) = exp
(
− ||y−Hx||2

2

)
, (4)

for all Hx ∈ Rn. Hence, the previous expression suggests that the joint probability of
interest satisfies

p(x1, x2, ..., xn|H, y) ∝ exp
(
− ||y−Hx||2

)
. (5)

From the above expression, the transition rule between consecutive states can be
computed. Particularly, it can be regarded as a discrete Gaussian distribution over Λ; hence,
sampling techniques such as Gibbs algorithm are applicable. Assume that at time index t,
the current state is given by x(t) ∈ An. Then, at the next time index, the method uniformly
picks one random position j out of {1, ..., n} and computes the conditional probability
of transitioning to each of the possible constellation points. With the remaining (n− 1)
positions fixed, the jth index is updated according to a stationary distribution to be detailed
in the next subsection.

3.2. Gibbs Sampling Implementation

In the GS method herein used, each iteration t consists of transitioning each coordinate
j = 1, ..., n to a possible element ω ∈ A sequentially, based on a sampling rule defined by
the following probability mass function (pmf) [23]:

p(x(t+1)
j |x(t), j, y, gH) =

exp
(
− 1

2α2 ||y− gHxj|ω ||2
)

∑
xj|ω̃∈A

exp
(
− 1

2α2 ||y− gHxj|ω̃ ||2
) , (6)

where xT
j|ω = [x(t+1)

1:j−1 , ω, x(t)j+1:n]
T and α is a positive TP. Equation (6) hints that the closer

lattice point gHx is to y, the higher the probability that it is is sampled. At the end of each
iteration, the ML cost

f (x(t+1)) , ||y− gHx(t+1)|| (7)

is computed and compared with the one of the best candidate thus far; then the vector x(t+1)

is fed into the next iteration. After tmax iterations, the algorithm is stopped and the vector
yielding the lowest ML cost is the output solution. For further implementation details and
complexity reduction techniques of GS see, e.g., [22,27]. The aforementioned process is
denoted in the literature by Gibbs sampling, where one iteration involves sampling one
entry at a time in the following manner [30,31]:

x(t+1)
1 ∼ p(x1|x

(t)
2 , ..., x(t)n , y, H);

x(t+1)
2 ∼ p(x2|x

(t+1)
1 , x(t)3 , ..., x(t)n , y, H);

... (8)

x(t+1)
n ∼ p(xn|x(t+1)

1 , x(t+1)
2 , ..., x(t+1)

n−1 , y, H).

At the end of each iteration, the ML cost in (7) is computed, and the resulting vector is fed
into the next iteration. The algorithm stops after a certain number of iterations and the
algorithms’ output is the vector with the best ML cost. The pseudocode for this type of
MCMC detector is presented in Algorithm 1.
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Algorithm 1 Reversible MCMC detector based on Gibbs sampling.

Input: y, H, initial vector x(0), number of iterations tmax

Denote the decision vector by z
Denote the ML cost function as f (·)
for t = 1 to tmax do

Pick a position index j ∈ {1, 2, ..., n} from a uniform distribution
Fix the (n− 1) symbols of x(t), and transition the jth symbol of x(t) to ω according

to (6)
Denote the new vector by x(t+1)

if f (x(t+1)) < f (z) then
Update z = x(t+1)

end if
end for
Output: z

3.3. The Complexity of Gibbs Sampling

For the sake of implementation (to limit complexity), a sequential rather than a re-
versible MCMC detector will be considered. The only difference resides in the way the
updated position index j is chosen. In sequential detection, each iteration consists of a block
iteration, where the n indices are updated sequentially, hence the name.

Denoting the difference at iteration t as d(t) = y− gHx(t) and in order to further reduce
complexity, one may notice that only the jth symbol is changed when (6) is computed [22].
Consequently, d(t) can be expressed as:

d(t) = d(t−1) − ghj∆xj|ω, (9)

where ∆xj|ω = x(t)j|ω − x(t−1)
j|ω and hj is the jth column of H. Therefore, the complexity of

computing the norms in (6), when the jth symbol is changed, is 2n complex operations (n
multiplications for each of the products (d(t)))Td(t) and hj∆xj|ω). Further, and assuming
that the number of required iterations will be large (processing for massive MIMO systems),
the complexity of an MCMC detector can be reduced even further. This can be achieved by
means of a QL factorization of the channel matrix, H = QL and by rewriting (3) as [32]

x̂ = arg min
x∈An

||ỹ− gLx||2, (10)

where ỹ = QTy. Exploiting the fact that L is a lower triangular matrix, the first difference
d(0) = ỹ− Lx costs n + 2 ∑n

i=1 i = n(n + 2) multiplication and addition operations (which
is lower than the conventional model 2n2). Moreover, at each iteration, the difference
d(t−1) − ghj∆xj|ω will require 2( n+1

2 )(|A| − 1) arithmetic operations. If the conventional
model was used, the corresponding complexity would be 2n(|A| − 1). Then, and taking
into account that computing ỹ yields O( 2

3 n3 + 2n2), there is a gain in complexity if

n(n + 2) + tmax(n + 1)(|A| − 1) +
2
3

n3 + 2n2 < 2ntmax(|A| − 1) + 2n2, (11)

which holds true when

tmax >
2
3 n2 + n + 2

(|A| − 1)(n− 1)
n ≈

2
3 n2 + n
|A| − 1

. (12)

Another possibility to keep complexity low, especially in higher constellations (64-QAM
and higher), is to only sample one-symbol away neighbors, as suggested in [23].
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3.4. The Stalling Effect on GS Performance

The performance of the GS method shall now be evaluated. To this purpose, set the
maximum number of block iterations tmax = 500 and the “temperature” parameter equal
to the noise variance, that is α2 = 1. For a symmetric system with n = 20 and a 4-QAM
constellation, the corresponding BER plot is shown in Figure 1.

SNR (dB)

2 4 6 8 10 12 14 16 18 20

B
E

R

10
-4

10
-3

10
-2

10
-1

10
0

10 x 10 , 4-QAM

MMSE

D-ELR-SLB-SV-SIC-MMSE

GS, α2 = 1

SD

Figure 1. BER performance for conventional Gibbs sampling detection algorithm for M = N = 10
and a 4-QAM constellation. A simulated performance of the D-ELR-SLB-SV-SIC-MMSE [14] is also
plotted for benchmarking.

For comparison purposes, performance of linear MMSE filtering and also the dual-
element-based lattice-reduction shortest-longest-basis with sorted-variance successive-
interference-cancellation with MMSE (D-ELR-SLB-SV-SIC-MMSE), proposed in [14], are
also depicted. This latter detector remains as one of the best low-complexity detection
techniques for large symmetric MIMO.

As can be inferred for low SNR, the performance is very close to optimal. However,
in the medium to high SNR, the BER did not improve any further. This problem is referred
in the literature as the “stalling problem” [33]. This effect can be explained as follows:
consider a case where for a candidate vector x(t), the norm ||y−Hx(t)|| is significantly
smaller than ||y − Hx(t)j|ω̃ ||, where x(t)j|ω̃ is the same x(t) with jth position changed with
ω̃. In this situation and, especially when SNR is high, one may find that after sampling
P(x(t+1) = x(t)|y, H) ≈ 1 and P(x(t+1) = x(t)j|ω̃ |y, H) ≈ 0 [33]. Thus, the conventional Gibbs
sampler may remain stuck in the same state for a very long time and that effect consequence
is depicted in Figure 1, as the number of iterations was fixed to tmax = 500. All in all and
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even though the chain is guaranteed to converge asymptotically when t→ ∞ [31], stalling
may occur. A possible solution to alleviate this problem is studied next.

3.5. Mixed Gibbs Sampling with Multiple Restarts

As stated previously, stalling occurs because the ML cost of the state vector may be
trapped in a local minima for many iterations [23]. That is in part due to the norm inside
the exponential in (5), which may cause disparate sampling probabilities. One possible
approach is to try and optimize the temperature parameter α such that the probability of
encountering the optimal solution is as high as possible. This evaluation was done in [22],
and its performance will be shown in a subsequent section. Following what was done
in [23,27], a mixed Gibbs sampling will be studied. This consists of a change in the update
rule in (8): instead of drawing all samples from (6) with one probability, there is a chance
q∞ = (1− q1) that the values are instead taken from a uniform distribution as

p(x(t+1)
j = ω|θ) ∼ U[0, 1], (13)

such that ∑ p(x(t+1)
j = ω|θ) = 1. This corresponds to setting α = ∞ in (6). Hence,

the method acquires the name of mixed Gibbs sampling (MGS), and as long as q∞ is chosen
accordingly, the stalling problem is alleviated: if stuck in a local minima, there is a non-zero
probability q∞ that the detector performs a random walk to move away from the local
solution. Unless otherwise stated, the mixing ratio value is set to q∞ = 1

n (as suggested
in [23]), which is equivalent to performing one random walk per each block iteration
on average.

To further improve performance, the multiple restarts (MR) technique, as proposed
in [23,27], will also be contemplated. Due to the random nature of MGS, different instances
of the algorithm may lead to different outputs, even when the input values are the same.
Denote the maximum number of allowed restarts by R. When R > 1, the output solution
is the one yielding the lowest ML cost and since each of the restarts is independent of the
others, a parallel computation of the various instances can be performed to decrease overall
detection time.

With the introduction of MR, the algorithm has now three distinct loop levels: R
restarts, t block iterations and n sampling processes per block iteration. Thus, the method
can become computationally demanding. However, when a close enough solution to
optimal has already been found, additional iterations may be redundant. Hence, in order
to limit complexity, a suitable stopping criterion can be defined.

If the ML cost remains unchanged for two consecutive block iterations, stalling is said
to have occurred [23]. Then, stalling mode is entered, where only a maximum number of
iterations θs more is allowed. If during stalling mode, a vector x with lower ML cost is
found, then stalling mode is left; otherwise, the algorithm terminates after θs iterations.
The parameter θs is chosen as large if the stalled ML cost is high and chosen as small
when the margin for improvement is narrow. If the algorithm does not stop as a result
of the stalling mode, then the initially set maximum number of block iterations tmax
are performed.

Under the considered model and when x is error free, the ML cost is ||n||2, whose dis-
tribution is a chi-square with 2NR degrees of freedom, mean NRσ2

n and variance NRσ4
n [34]

(Chapter 11). Thus, a normalized ML cost of solution vector x can be characterized as [23]

φ(x) =
||y− qHx||2 − Nσ2

n√
Nσ2

n
. (14)

The metric (14) can be seen as a a difference between ML cost and the mean of ||n||2
normalized by the standard deviation of ||n||2 (note that under the channel model in (1),
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σ2
n = 1). In addition to the ML cost, the stopping criteria θs should also take into account

the size of the QAM constellation. Accordingly, [23] proposed the following:

θs(x) = dmax(cmin, 10 log2M exp(φ(x)))e, (15)

where cmin is the minimum number of iterations following a stalling event andM is the
constellation size, as defined in Section 2 (and here made equal for all dimensions).

Likewise, a stopping criteria for the maximum number of repetitions R can be defined.
In a similar fashion to the previous case (see [23] for further insight), the algorithm stops if
the number of restarts performed so far is greater than the following integer threshold:

P = bmax(0, 0.5 log2Mφ(x))c+ 1. (16)

The usage of both MGS and the stopping criteria in (15) and (16) will provide close to
optimal solutions, while yielding limited complexity, as will be verified in the next subsection.

3.6. Performance of Mixed GS with Multiple Restarts

The performance of the described mixed Gibbs sampling with restarts will be evaluated
here. Setting the number of dimensions n = 20, the maximum number of restarts being
R = 15, the maximum number of iterations tmax = 160 and cmin = 10, the results are
depicted in Figure 2. The initial vector for the first restart was the output of the MMSE
filter and for the remaining restarts a random initial vector was used. As can be inferred,
the stalling problem was efficiently fixed with the use of MGS-MR. Further, and as was
expected, the attained diversity by MGS-MR is similar to the one obtained by the LRA
method. Moreover, the BER gain attained by GS-MR over D-ELR-SLB-SV-SIC-MMSE is
not negligible. In particular, the randomized algorithm requires around less 3 dB than the
studied LR algorithm to achieve a BER of 10−3.

SNR (dB)

2 4 6 8 10 12 14 16 18 20

B
E

R

10
-4

10
-3

10
-2

10
-1

10
0

10 x 10 , 4-QAM

MMSE
D-ELR-SLB-SV-SIC-MMSE

MGS-MR, α2 = 1, ∞

GS, α2 = 1

SD

Figure 2. BER performance for both conventional Gibbs sampling and mixed Gibbs sampling with
multiple restarts detection algorithms for M = N = 10 and a 4-QAM constellation.
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Increasing dimensions to n = 32, using a 16-QAM constellation and setting tmax = 512,
the results are shown in Figure 3. As was expected, in the low SNR regime, the perfor-
mance is near ML and better than the one achieved by the LRA method. However, for
SNR ≥ 20 dB, the MCMC detector suffers a degradation in performance. This phenomenon
is related with the rather low convergence rate (mixing time) of the underlying Markov
chains, since α2 = 1. Particularly, this choice for α will cause the Markov chain to take a
long time to reach its stationary distribution [22]. To solve this problem, three different
approaches are possible:

1. Try and optimize the mixing ratio q∞ as a function of the SNR.
2. Find the dependence of α with the value of the SNR.
3. Increase the maximum number of iterations tmax and use different, better initial

vectors x(0), at the cost of increased complexity.

Option 2 from the above will be evaluated next.

SNR (dB)

10 12 14 16 18 20 22 24 26 28

B
E

R

10
-4

10
-3

10
-2

10
-1

10
0

16 x 16 , 16-QAM

MMSE
D-ELR-SLB-SV-SIC-MMSE

MGS-MR, α2 = 1, ∞

SD

Figure 3. BER performance for both conventional Gibbs sampling and mixed Gibbs sampling with
multiple restarts detection algorithms for M = N = 16 and 16-QAM constellation.

4. Optimization of the Temperature Parameter

Performance of GS based methods are highly dependent on the chosen TP. If α2 is set
to equal the noise variance (that is α2 = 1), as in the conventional GS, a fast convergence to
a local minimum is guaranteed but an error floor in the high SNR regime is to be expected.
This is related with the existence of several local minima where the algorithm may be stuck
for a very long time, a situation that becomes increasingly preponderant when either the
mk-arity or n are large. On the other hand, if α2 is chosen large, convergence rates of the
underlying Markov chain increase (faster mixing time), but the likelihood of visiting the
optimal solution in the steady state decreases, hence resulting in a trade-off situation in the
choice of the temperature parameter.
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In order to overcome this problem, the authors in [23] proposed a mixed GS (MGS)
where at each iteration there is a small chance that a random walk is performed (which
coincides with setting α2 = ∞ in (6)). However, this method proves to mix slowly to the
steady state, hence requiring a considerable amount of restarts and iterations in order to
perform reliable detection. On the other hand, ref. [22] proposed a method comprising of a
fixed, optimized TP α2

opt., proportional to SNR, as follows:

α2
opt. =

SNR
log(n)

+

√(
SNR

log(n)

)2

− 2
SNR

log(n)
, (17)

only valid for SNR > 2 log n, as one is interested in. This corresponds to the largest possi-
ble TP, such that, once in the stationary distribution, there is polynomially small and not
exponentially small chance of finding the optimal vector. The method using the fixed TP
as in (17) will henceforth be denoted as optimized GS (OGS). Notwithstanding the break-
through developments, the results in [22] were only obtained for a {−1, 1} constellation
set, which is rather limited. It is interesting to note that the result in (17) suggests that αopt.

scales with O(
√

SNR), for fixed n, which means that faster mixing times are required in
the high SNR regime.

In order to demonstrate that MCMC methods employing Gibbs sampling converge
to the optimal solution and that the parameter α plays a crucial role in that convergence,
a study of BER evolution in terms of the number of iterations will next be entailed. For that
purpose, the SNR was fixed, and a set of values for α2 was chosen, including α2 = 1
and α2 = α2

opt.. Using the MMSE filter output as the initial vector, Figures 4 and 5 show
the change in BER with an increasing number of iterations. For comparison purposes,
conventional detectors are also depicted. The first thing to be noticed in Figure 4 is the fast
convergence of the GS method to the ML performance when α2 = “optimal” (blue line).
Moreover, it is interesting to observe the rapid BER decay in the first few iterations for when
α2 = 1 and then the stalling effect, as had been previously verified. Higher choices of α2

(namely, α2 = 9 and α2 = 18) proved not to improve the MMSE initial solution any further.
Let one denote the detector using α2 = “optimal”, mixing ratio q∞ = 0 and multiple

restarts, as optimized Gibbs sampling with multiple restarts (OGS-MR). The results corre-
sponding to OGS-MR are depicted in Figure 6. For comparison purposes, the remaining
used parameters are identical to the ones used to obtain Figure 3. As can be seen and as
expected, the problem in the high SNR regime was partially mitigated, confirming that
choosing an α different from 1 is indeed beneficent. Nonetheless, the stalling problem is
present once again, and that is due to the existence of relative minimums, as explained in
the comments regarding Figure 1.

Having in mind the results obtained so far, one can now present a novel combination
of both MGS and OGS methods, which closes the gap in performance for large MIMO
detection and for high SNR values.
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Figure 4. BER performance for conventional Gibbs sampling with different “temperature” parameters.
M = M = 10 and a 4-QAM constellation were used.
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Figure 5. BER performance for conventional Gibbs sampling with different “temperature” parameters.
M = N = 16 and a 16-QAM constellation were used.
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Figure 6. BER performance for optimized Gibbs sampling with multiple restarts (OGS-MR) detection
algorithm for M = N = 16 and a 16-QAM constellation.

5. Proposed Triple-Mixed Gibbs Sampling

Here, we propose an algorithm that at each iteration picks a different value for the
TP from the set {∞, SNR/ log(n), 1} with probabilities q∞, (1− q∞)qSNR, and (1− q∞)q1,
respectively. In this manner, at each iteration there is a chance q∞ that a random walk is
performed; otherwise, the algorithm chooses α2 = 1 or α2 = SNR/ log(n) with probabilities
q1 and qSNR, and samples accordingly. Note that since we are interested only in the high
SNR regime (SNR→ ∞) and to avoid dealing with imaginary TP, the term inside the square
root operator has been despised. For each sampling process, choosing α2 = 1 ensures fast
convergence to a local minimum, α2 ∝ SNR guarantees a quick mix to steady state and
α2 = ∞ is necessary to avoid “deep” local minima. Whilst yielding the same complexity,
we find that with a suitable choice for q∞ and q1 (qSNR is redundant, as q1 + qSNR = 1),
it is possible to effectively mitigate the stalling effect and achieve near-ML performance.
The pseudocode related with the proposed variant, denoted as triple MGS (T-MGS), is
presented in Algorithm 2, where U[0, 1] denotes the uniform distribution between 0 and 1,
and pmf stands for probability mass function.

Mixing Ratio Choice

For demonstration purposes, consider n = 32, mk = 16, for k = 1, ..., n, and
q1 = qSNR = 1/2. The performance in terms of BER as a function of the number of
iterations for different mixing ratios q∞ is depicted in Figure 7, where two different SNR
values were considered (18 and 19 dB). The first thing to be inferred, after the tmax = 800
iterations, is that in both cases it is a non-zero mixing ratio (q∞ 6= 0) that minimizes the BER,
hence proving the advantage of having a triple MGS algorithm. Additionally, the minimum
value for different SNR values is attained for different values of q∞, implying that the
optimal value of q∞ also has a dependence with the SNR.
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Iteration Number
0 100 200 300 400 500 600 700 800

B
E

R

10-3

10-2

10-1

T-MGS, q
∞

 = 0

T-MGS, q
∞

 = 1/(5n)

T-MGS, q
∞

 = 1/(10n)

T-MGS, q
∞

 = 1/(15n)

SNR = 19 dB

SNR = 18 dB

Figure 7. BER performance as a function of the number of iterations for different mixing ratios q∞

(with one restart only, and the MMSE solution was used as the initial vector). The simulations are for
M = N = 16 (i.e., n = 32) with a 16-QAM constellation.

Finding the optimal choice for the mixing ratios q is a non-trivial task; nevertheless,
one is to find parameters that on average perform well for any SNR. The authors in [23]
proposed the MGS method with q∞ = 1/n, q1 = 1, whereas [22] suggested the OGS
with q∞ = 0, qSNR = 1. With the T-MGS algorithm, one expects to experience fewer
stalling occurrences in local minima than in MGS, as long as qSNR > 0 (faster mixing
time). This fact was verified through simulation and, as depicted in Figure 7, a choice
of q∞ = 1/(10n), q1 = qSNR = 1/2 proved to attain very satisfactory results, the reason
why these values will be adopted henceforth in the paper for the T-MGS. Note that with
this choice of parameters, one random walk is performed each 10 iterations on average,
and whenever it is not carried out, there is a similar chance that α2 = 1 or α2 ∝ SNR
are chosen.

A step-by-step description of the proposed algorithm including multiple restarts can
be found in Algorithm 2. It is worth mentioning that the previously mentioned MGS-
MR corresponds to doing q∞ = 1/n and q1 = 1, whilst OGS-MR coincides with setting
q∞ = q1 = 0 in Algorithm 2. The “temperature” parameters and corresponding mixing
ratios are summarized in Table 1.

Reconsidering the case where R = 15 and the stopping criteria as was done for
Figures 3 and 6, the BER performance including the T-MGS detector is shown in Figure 8.
The previously identified problems have been mitigated by T-MGS, and the curve in
Figure 8 shows that optimal diversity is indeed obtained for the entirety of the studied
SNR range. Moreover, for a reference BER value of 10−3, a gain of 5 dB is attained by
the proposed algorithm over the state-of-the-art LRA method (the green curve). Taking
into account the previously mentioned complexity reduction techniques and the attained
performance, T-MGS is certainly a suitable candidate for solving the detection problem in
large MIMO systems. In addition, it is worth emphasizing that the algorithm is parallel
architecture-friendly, which is nowadays becoming an increasingly important feature.
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Algorithm 2 Triple mixed Gibbs sampling algorithm with multiple restarts and stopping
criteria.

Input: y, H, x(0), tmax, q∞, q1, R
Define:
f (x)→ML cost function (Equation (7))
φ(x)→ Normalized ML cost function (Equation (14))
θs(x)→ Stalling limit function (Equation (15))
p(x, α|θ)→ Transition probability distribution (Equation (6))
cb → Cost of best candidate so far; set initial cb to ∞
Compute:
for r = 1 to R do

Initial candidate: z = x(0); Initial cost: β = f (z)
t = 0
while t < tmax do

for i = 1 to n do
generate r1, r2 ∼ U[0, 1]
if r1 < q∞ then

generate pmf p(x(t+1)
i = ω) ∼ U[0, 1], ∀ω ∈ A

sample x(t+1)
i from this pmf

else
if r2 < q1 then

α2 = 1
else

α2 ∝ SNR (according to Equation (17) and Table 1)
end if
x(t+1)

i ∼ p(xi, α|x(t+1)
1 , ..., x(t+1)

i−1 , x(t)i+1, ..., x(t)n )
end if

end for
γ = f (x(t+1))
if γ ≤ β then

z = x(t+1); β = γ
end if
t = t + 1; β

(t)
v = β

if β
(t)
v == β

(t−1)
v then

compute θs(z)
if θs < t then

if β
(t)
v == β

(t−θs)
v then

break while
end if

end if
end if

end while
if f (z) < cb then

zb = z; cb = f (zb)
end if
compute P = bmax(0, 0.5 log2 Mφ(zb))c+ 1
if P < r then

break for
end if

end for
Output: zb
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Table 1. “Temperature” parameters and corresponding mixing ratios used to compare the various GS
methods, including the proposed one, for N = 16 and when a 16-QAM constellation size is used.

Variant
Mixing Ratio

q∞ (α2 = ∞) q1 (α2 = 1) qSNR(α2 = α2
opt.)

MGS 1/2NT 1 0

OGS 0 0 1

T-MGS 1/20NT 1/2 1/2
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16 x 16 , 16-QAM

MMSE
D-ELR-SLB-SV-SIC-MMSE

MGS-MR, α2 = 1, ∞

OGS-MR, α2 = "optimal"

T-MGS-MR, α2 = 1, "optimal", ∞

SD

Figure 8. BER performance as a function of the SNR for the optimized, mixed and triple mixed Gibbs
sampling algorithms with multiple restarts for NR = NT = 16 and a 16-QAM constellation, using
R = 15 restarts.

6. Adaptively Modulated MIMO Detection

In a MTC-dominated context, when a number of different (single-antenna) devices
transmits data to a BS, they should not be all transmitting using the same modulation order.
This can happen due to ad hoc deployment of terminals (such as sensors) or in a planned
manner. In an AM-MIMO system, the various transmitters adjust their parameters (e.g.,
their transmit power, or modulation order [19]) according to the channel state information
(CSI) in order to attain a target objective (e.g., data throughput, spectral efficiency). Since
each antenna is affected by different channel conditions, this adjustment feature often leads
to non-negligible gains when compared to the most often studied fixed MIMO.

In this paper, we focus on solving the problem of detection when the different users
have dissimilar constellation sizes using the proposed GS method. In fact, since the
sampling procedure in (6) is done sequentially and because each instance corresponds to a
given user, the adaptation of Algorithm 2 is quite straightforward, and can be summarized
as follows:
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1. Resorting to the CSI, determine the constellation size of each user according to a
given criteria (for instance, using the proposed scheme in [19]). Each user has then an
assigned alphabet from which is allowed to transmit, denoted by Ak.

2. Apply Algorithm 2 to the received vector (1), taking into account that the construction
of the sampling probabilities in (6) is user dependent, i.e., each candidate entry to be
sampled can only be chosen from Ak.

To best of the authors’ knowledge, this is the first time that a detector based on a
randomized algorithm is utilized to perform detection in AM-MIMO (alternatives in the
literature include either linear detection [17] or SD-based methods [20], whose performance-
complexity trade-offs render them useless in large dimensions). Further, given the random
nature of the proposed detector, it can be easily extended to generate soft-output values [23],
which are of paramount importance when coded transmissions are used.

7. Assessment of the Proposed GS for Large MIMO and AM-MIMO

In order to verify the superiority of T-MGS over MGS and OGS, a comparison of the
average BER performance against the number of iterations is first provided in Figure 9 for
symmetric MIMO. The number of antennas was set to N = 16, a 16-QAM constellation
was used, the number of iterations tmax was set to 1000, while the SNR was fixed to
20 dB. Additionally, the conventional GS method (α2 = 1) is shown, and the “optimal” TP
parameter in the OGS method is computed according to [22] (Equation (23)). In all instances,
the MMSE filter output was chosen as the initial candidate vector x(0). For comparison
purposes, SD performance (which attains ML performance) is also depicted. As can be
verified, different mixing ratios exhibit dissimilar behaviors. Firstly, it is confirmed that
conventional GS has a rapid decay in BER in the first few iterations, but then becomes stalled
in a local minima. Secondly, it is observed that the proposed method T-MGS outperforms
both MGS and OGS by a non-negligible margin, thus showing the importance of choosing
adequate mixing ratios. Nonetheless, the performance observed in Figure 9 tends to a BER
that is still far from the optimal, which is achieved via SD, therefore proving the usefulness
of executing MR, as suggested in [23,27], and whose effect will be analyzed next.

Iteration Number
0 200 400 600 800 1000

B
E

R

10-5

10-4

10-3

10-2

10-1

Conventional GS, α2 = 1

MGS, α2 = 1, ∞

OGS, α2 = "optimal"
Proposed, α2 = 1, SNR / log(n), ∞
SD

Figure 9. BER performance as a function of the number of iterations t for SNR = 20 dB for different
TP options (not including MR). The simulations are for n = 32, with a 16-QAM constellation.
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For the assessment of BER as a function of the SNR, and taking into account the
previous result, R = 10 restarts are performed, fulfilling tmax = 600 iterations each, and the
output coincides with the candidate vector yielding the lowest ML cost. For the first restart,
the MMSE solution is used as the initial vector, and for the remaining ones, a randomly
chosen candidate is picked from the lattice instead. The performance for these settings is
depicted in Figure 10, which serves as a summary of the performance that the proposed
T-MGS technique is able to achieve with a quite low complexity: in Figure 8, one only
uses R = 10 restarts, rather than the R = 10 restarts in Figure 8, and the a BER and SNR
are in the regions of practical interest. As one could have already seen in Figures 6 and 8,
a first thing to be noted is the existence of a stalling effect in OGS, which proves that [22]
(Equation (23)) does not necessary scale for constellations larger than 4-QAM. Further, it can
be verified that, with the inclusion of the MR approach, T-MGS performs very closely to the
SD, whilst achieving near-optimal diversity for the whole studied SNR range. Again, it is
worth emphasizing that the MR instances are parallel-architecture friendly, therefore such
hardware design model, increasingly available at the BS, can be exploited to increase speed.

In order to further confirm the suitability of the proposed algorithm for a quite large
symmetric MIMO system (M = N = 32), a simulation using q∞ = 1/(10M), R = 15
and tmax = 1000 was performed. The result is depicted in Figure 11, and the previously
obtained conclusions can also be applied here. Note that, further augmenting the number
of antennas or the constellation size would lead to a drastic increase in complexity, even
using the stopping criteria or the complexity reduction techniques suggested in Section 3.3.
Nonetheless, the algorithm can be efficiently used to obtain an estimate of SD performance
for any number of dimensions, provided the initial vector is close to the initial solution (for
instance, feeding the solution of the D-ELR algorithm as the initial vector in T-MGS would
lead to a lower number of average number of required iterations).

SNR (dB)
14 16 18 20 22 24 26

B
E

R

10-5

10-4

10-3

10-2

10-1

100
MMSE

OGS-MR, α2 = "optimal"
Proposed-MR, α2 = 1, SNR / log(n), ∞
SD

Figure 10. Comparison summary of the BER performance as a function of the SNR of the proposed
variant for large MIMO systems. The simulations are for n = 32, with a 16-QAM constellation (the
system analysed in Figure 9, now with R = 10).
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Figure 11. BER performance as a function of the SNR for the proposed triple mixed Gibbs sampling (T-
MGS) algorithm with multiple restarts for NR = NT = 32 and a 16-QAM constellation. The simulated
performance of the LRA benchmark is also plotted.

Finally, a comparative study is conducted between ML detection (using SD) and the
T-MGS method for AM-MIMO systems employing M = 4 terminals and N = 4 antennas
at the BS. The number of iterations tmax was set to 600, whereas the number of restarts
was only R = 5. The BER performance for four distinct sets of constellations is shown
in Figure 12. It should be noted that, given the low-complexity and power limitations of
MTC devices, these terminals are expected to transmit using low-order modulation in the
uplink. Millimeter-waves (mmWaves) systems are on the rise, but those also tend to use
low-order modulation due to both the high attenuation channels (that would imply larger
transmit powers to keep the SNR) and the challenges posed to the analogue-to-digital
converters (ADCs) when using wideband signaling. For these reasons, constellations larger
than 16-QAM are uncommon in 5G mmWave systems [35]. Even so, the AM-MIMO system
considered users with 4-QAM, 64-QAM, and 256-QAM. Once again, it can be verified the
quasi-optimal performance of our algorithm, proving itself as a viable alternative over
SD-based AM-MIMO detectors.
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Figure 12. BER performance as a function of the SNR of T-MGS detection for AM-MIMO systems in
a case with M = 4 terminals, each of which using the modulations listed in the labels.

8. Conclusions

This paper proposed a new triple mixed Gibbs sampling algorithmic approach to
perform detection in large MIMO and adaptively modulated MIMO systems. The latter
systems appear as the most natural type of cell-based MIMO uplink when multiple MTC
terminals exist and a massive MIMO BS is absent. The paper identifies the existing trade-offs
in the choice of the temperature parameter, and capitalizing on those, a suitable selection
for both mixing times and mixing ratios was presented. Numerical results show that
the suggested variant outperforms the existing ones in the literature for symmetric large
MIMO, whilst requiring a lower number of iterations. Further, exploiting the delay-less
multiple restarts feature, the proposed variant is shown to obtain near-optimal performance.
These results were obtained for large MIMO with full-loaded cells, rather then with loads
0.75 < N

M < 1 as in the recent work [27]; even so, the attained performance by the proposed
T-MGS is comparable to that one, when fairly comparing the performances at the same
number of iterations.

Secondly, the paper shows how the proposed MIMO detection technique can be
naturally extended to AM-MIMO, allowing us to detect in each MIMO stream a different
alphabet, which is a feature that is not as straightforward to implement in other types of
receivers, that often require a complicated control of the lattice boundaries. Because GS
receivers do not operate in the lattice domain, but rather directly in the constellation
domain, these uneven alphabets are simpler to track in the different streams.

A natural extension of this research should be the adaptation of the T-MGS detector to
soft-metrics and to coded MIMO.
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