research

Construction of a non-standard quantum field theory through a generalized Heisenberg algebra

Abstract

We construct a Heisenberg-like algebra for the one dimensional quantum free Klein-Gordon equation defined on the interval of the real line of length LL. Using the realization of the ladder operators of this type Heisenberg algebra in terms of physical operators we build a 3+1 dimensional free quantum field theory based on this algebra. We introduce fields written in terms of the ladder operators of this type Heisenberg algebra and a free quantum Hamiltonian in terms of these fields. The mass spectrum of the physical excitations of this quantum field theory are given by n2π2/L2+mq2\sqrt{n^2 \pi^2/L^2+m_q^2}, where n=1,2,...n= 1,2,... denotes the level of the particle with mass mqm_q in an infinite square-well potential of width LL.Comment: Latex, 16 page

    Similar works

    Available Versions

    Last time updated on 03/01/2020