18 research outputs found

    Biochemical and virological analysis of the 18-residue C-terminal tail of HIV-1 integrase

    Get PDF
    Background The 18 residue tail abutting the SH3 fold that comprises the heart of the C-terminal domain is the only part of HIV-1 integrase yet to be visualized by structural biology. To ascertain the role of the tail region in integrase function and HIV-1 replication, a set of deletion mutants that successively lacked three amino acids was constructed and analyzed in a variety of biochemical and virus infection assays. HIV-1/2 chimers, which harbored the analogous 23-mer HIV-2 tail in place of the HIV-1 sequence, were also studied. Because integrase mutations can affect steps in the replication cycle other than integration, defective mutant viruses were tested for integrase protein content and reverse transcription in addition to integration. The F185K core domain mutation, which increases integrase protein solubility, was furthermore analyzed in a subset of mutants. Results Purified proteins were assessed for in vitro levels of 3' processing and DNA strand transfer activities whereas HIV-1 infectivity was measured using luciferase reporter viruses. Deletions lacking up to 9 amino acids (1-285, 1-282, and 1-279) displayed near wild-type activities in vitro and during infection. Further deletion yielded two viruses, HIV-11-276 and HIV-11-273, that displayed approximately two and 5-fold infectivity defects, respectively, due to reduced integrase function. Deletion mutant HIV-11-270 and the HIV-1/2 chimera were non-infectious and displayed approximately 3 to 4-fold reverse transcription in addition to severe integration defects. Removal of four additional residues, which encompassed the C-terminal β strand of the SH3 fold, further compromised integrase incorporation into virions and reverse transcription. Conclusion HIV-11-270, HIV-11-266, and the HIV-1/2 chimera were typed as class II mutant viruses due to their pleiotropic replication defects. We speculate that residues 271-273 might play a role in mediating the known integrase-reverse transcriptase interaction, as their removal unveiled a reverse transcription defect. The F185K mutation reduced the in vitro activities of 1-279 and 1-276 integrases by about 25%. Mutant proteins 1-279/F185K and 1-276/F185K are therefore highlighted as potential structural biology candidates, whereas further deleted tail variants (1-273/F185K or 1-270/F185K) are less desirable due to marginal or undetectable levels of integrase function

    A genome-wide CRISPR screen identifies a restricted set of HIV host dependency factors

    Get PDF
    Host proteins are essential for HIV entry and replication and can be important nonviral therapeutic targets. Large-scale RNA interference (RNAi)-based screens have identified nearly a thousand candidate host factors, but there is little agreement among studies and few factors have been validated. Here we demonstrate that a genome-wide CRISPR-based screen identifies host factors in a physiologically relevant cell system. We identify five factors, including the HIV co-receptors CD4 and CCR5, that are required for HIV infection yet are dispensable for cellular proliferation and viability. Tyrosylprotein sulfotransferase 2 (TPST2) and solute carrier family 35 member B2 (SLC35B2) function in a common pathway to sulfate CCR5 on extracellular tyrosine residues, facilitating CCR5 recognition by the HIV envelope. Activated leukocyte cell adhesion molecule (ALCAM) mediates cell aggregation, which is required for cell-to-cell HIV transmission. We validated these pathways in primary human CD4 + T cells through Cas9-mediated knockout and antibody blockade. Our findings indicate that HIV infection and replication rely on a limited set of host-dispensable genes and suggest that these pathways can be studied for therapeutic intervention

    Assemblage des particules virales et transmission du VIH de cellule Ă  cellule

    No full text
    PARIS7-Bibliothèque centrale (751132105) / SudocSudocFranceF

    HIV cell-to-cell transmission requires the production of infectious virus particles and does not proceed through env-mediated fusion pores.

    No full text
    International audienceDirect cell-to-cell transmission of human immunodeficiency virus (HIV) is a more potent and efficient means of virus propagation than infection by cell-free virus particles. The aim of this study was to determine whether cell-to-cell transmission requires the assembly of enveloped virus particles or whether nucleic acids with replication potential could translocate directly from donor to target cells through envelope glycoprotein (Env)-induced fusion pores. To this end, we characterized the transmission properties of viruses carrying mutations in the matrix protein (MA) that affect the incorporation of Env into virus particles but do not interfere with Env-mediated cell-cell fusion. By use of cell-free virus, the infectivity of MA mutant viruses was below the detection threshold both in single-cycle and in multiple-cycle assays. Truncation of the cytoplasmic tail (CT) of Env restored the incorporation of Env into MA mutant viruses and rescued their cell-free infectivity to different extents. In cell-to-cell transmission assays, MA mutations prevented HIV transmission from donor to target cells, despite efficient Env-dependent membrane fusion. HIV transmission was blocked at the level of virus core translocation into the cytosol of target cells. As in cell-free assays, rescue of Env incorporation by truncation of the Env CT restored the virus core translocation and cell-to-cell infectivity of MA mutant viruses. These data show that HIV cell-to-cell transmission requires the assembly of enveloped virus particles. The increased efficiency of this infection route may thus be attributed to the high local concentrations of virus particles at sites of cellular contacts rather than to a qualitatively different transmission process

    Biochemical and virological analysis of the 18-residue C-terminal tail of HIV-1 integrase

    No full text
    Abstract Background The 18 residue tail abutting the SH3 fold that comprises the heart of the C-terminal domain is the only part of HIV-1 integrase yet to be visualized by structural biology. To ascertain the role of the tail region in integrase function and HIV-1 replication, a set of deletion mutants that successively lacked three amino acids was constructed and analyzed in a variety of biochemical and virus infection assays. HIV-1/2 chimers, which harbored the analogous 23-mer HIV-2 tail in place of the HIV-1 sequence, were also studied. Because integrase mutations can affect steps in the replication cycle other than integration, defective mutant viruses were tested for integrase protein content and reverse transcription in addition to integration. The F185K core domain mutation, which increases integrase protein solubility, was furthermore analyzed in a subset of mutants. Results Purified proteins were assessed for in vitro levels of 3' processing and DNA strand transfer activities whereas HIV-1 infectivity was measured using luciferase reporter viruses. Deletions lacking up to 9 amino acids (1-285, 1-282, and 1-279) displayed near wild-type activities in vitro and during infection. Further deletion yielded two viruses, HIV-11-276 and HIV-11-273, that displayed approximately two and 5-fold infectivity defects, respectively, due to reduced integrase function. Deletion mutant HIV-11-270 and the HIV-1/2 chimera were non-infectious and displayed approximately 3 to 4-fold reverse transcription in addition to severe integration defects. Removal of four additional residues, which encompassed the C-terminal β strand of the SH3 fold, further compromised integrase incorporation into virions and reverse transcription. Conclusion HIV-11-270, HIV-11-266, and the HIV-1/2 chimera were typed as class II mutant viruses due to their pleiotropic replication defects. We speculate that residues 271-273 might play a role in mediating the known integrase-reverse transcriptase interaction, as their removal unveiled a reverse transcription defect. The F185K mutation reduced the in vitro activities of 1-279 and 1-276 integrases by about 25%. Mutant proteins 1-279/F185K and 1-276/F185K are therefore highlighted as potential structural biology candidates, whereas further deleted tail variants (1-273/F185K or 1-270/F185K) are less desirable due to marginal or undetectable levels of integrase function.</p

    Engineering modular intracellular protein sensor-actuator devices

    No full text
    Understanding and reshaping cellular behaviors with synthetic gene networks requires the ability to sense and respond to changes in the intracellular environment. Intracellular proteins are involved in almost all cellular processes, and thus can provide important information about changes in cellular conditions such as infections, mutations, or disease states. Here we report the design of a modular platform for intrabody-based protein sensing-actuation devices with transcriptional output triggered by detection of intracellular proteins in mammalian cells. We demonstrate reporter activation response (fluorescence, apoptotic gene) to proteins involved in hepatitis C virus (HCV) infection, human immunodeficiency virus (HIV) infection, and Huntington’s disease, and show sensor-based interference with HIV-1 downregulation of HLA-I in infected T cells. Our method provides a means to link varying cellular conditions with robust control of cellular behavior for scientific and therapeutic applications
    corecore