654 research outputs found

    Predictors of survival in frontotemporal lobar degeneration syndromes

    Get PDF
    After decades of research, large-scale clinical trials in patients diagnosed with frontotemporal lobar degeneration (FTLD) are now underway across multiple centres worldwide. As such, refining the determinants of survival in FTLD represents a timely and important challenge. Specifically, disease outcome measures need greater clarity of definition to enable accurate tracking of therapeutic interventions in both clinical and research settings. Multiple factors potentially determine survival, including the clinical phenotype at presentation; radiological patterns of atrophy including markers on both structural and functional imaging; metabolic factors including eating behaviour and lipid metabolism; biomarkers including both serum and cerebrospinal fluid markers of underlying pathology; as well as genetic factors, including both dominantly inherited genes, but also genetic modifiers. The present review synthesises the effect of these factors on disease survival across the syndromes of frontotemporal dementia, with comparison to amyotrophic lateral sclerosis, progressive supranuclear palsy and corticobasal syndrome. A pathway is presented that outlines the utility of these varied survival factors for future clinical trials and drug development. Given the complexity of the FTLD spectrum, it seems unlikely that any single factor may predict overall survival in individual patients, further suggesting that a precision medicine approach will need to be developed in predicting disease survival in FTLD, to enhance drug target development and future clinical trial methodologies

    Viral genetic determinants of h5n1 influenza viruses that contribute to cytokine dysregulation

    Get PDF
    Human disease caused by highly pathogenic avian influenza (H5N1) is associated with fulminant viral pneumonia and mortality rates in excess of 60%. Cytokine dysregulation is thought to contribute to its pathogenesis. In comparison with human seasonal influenza (H1N1) viruses, clade 1, 2.1, and 2.2 H5N1 viruses induced higher levels of tumor necrosis factor-α in primary human macrophages. To understand viral genetic determinants responsible for this hyperinduction of cytokines, we constructed recombinant viruses containing different combinations of genes from high-cytokine (A/Vietnam/1203/04) and low-cytokine (A/WSN/33) phenotype HlNl viruses and tested their cytokine-inducing phenotype in human macrophages. Our results suggest that the H5N1 polymerase gene segments, and to a lesser extent the NS gene segment, contribute to cytokine hyperinduction in human macrophages and that a putative H5 pandemic virus that may arise through genetic reassortment between H5N1 and one of the current seasonal influenza viruses may have a markedly altered cytokine phenotype. © 2009 by the Infectious Diseases Society of America. All rights reserved.published_or_final_versio

    Development of a culturally sensitive life review program for Chinese patients with advanced cancer

    Get PDF
    2010-2011 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Highly pathogenic avian influenza H5N1 virus delays apoptotic responses via activation of STAT3

    Get PDF
    Highly pathogenic avian influenza (HPAI) H5N1 virus continues to pose pandemic threat, but there is a lack of understanding of its pathogenesis. We compared the apoptotic responses triggered by HPAI H5N1 and low pathogenic H1N1 viruses using physiologically relevant respiratory epithelial cells. We demonstrated that H5N1 viruses delayed apoptosis in primary human bronchial and alveolar epithelial cells (AECs) compared to H1N1 virus. Both caspase-8 and -9 were activated by H5N1 and H1N1 viruses in AECs, while H5N1 differentially up-regulated TRAIL. H5N1-induced apoptosis was reduced by TRAIL receptor silencing. More importantly, STAT3 knock-down increased apoptosis by H5N1 infection suggesting that H5N1 virus delays apoptosis through activation of STAT3. Taken together, we demonstrate that STAT3 is involved in H5N1-delayed apoptosis compared to H1N1. Since delay in apoptosis prolongs the duration of virus replication and production of pro-inflammatory cytokines and TRAIL from H5N1-infected cells, which contribute to orchestrate cytokine storm and tissue damage, our results suggest that STAT3 may play a previously unsuspected role in H5N1 pathogenesis.published_or_final_versio

    Neural markers of category-based selective working memory in aging

    Get PDF
    Working memory (WM) is essential for normal cognitive function, but shows marked decline in aging. The importance of selective attention in guiding WM performance is increasingly recognized. Studies so far are inconclusive about the ability to use selective attention during WM in aging. To investigate the neural mechanisms supporting selective attention in WM in aging, we tested a large group of older adults using functional magnetic resonance imaging whilst they performed a category-based (faces/houses) selective-WM task. Older adults were able to use attention to encode targets and suppress distractors to reach high levels of task performance. A subsequent, surprise recognition-memory task showed strong consequences of selective attention. Attended items in the relevant category were recognized significantly better than items in the ignored category. Neural measures also showed reliable markers of selective attention during WM. Purported control regions including the dorsolateral and inferior prefrontal and anterior cingulate cortex were reliably recruited for attention to both categories. Activation levels in category-sensitive visual cortex showed reliable modulation according to attentional demands, and positively correlated with subsequent memory measures of attention and WM span. Psychophysiological interaction analyses showed that activity in category-sensitive areas were coupled with non-sensory cortex known to be involved in cognitive control and memory processing, including regions in the prefrontal cortex and hippocampus. In summary, we found that older adults were able to recruit a network of brain regions involved in top-down attention during selective WM, and individual differences in attentional control corresponded to the degree of attention-related modulation in the brain

    Association between low-dose pulsed intravenous cyclophosphamide therapy and amenorrhea in patients with systemic lupus erythematosus: A case-control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The risk for amenorrhea following treatment of systemic lupus erythematosus (SLE) patients with low-dose intravenous cyclophosphamide (IVCY) has not been fully explored. Our objective was to ascertain the incidence of amenorrhea following treatment with low-dose IVCY and the association between amenorrhea and the clinical parameters of SLE.</p> <p>Methods</p> <p>A case-control retrospective study of premenopausal women ≤ 45 years old who had been treated for SLE with low-dose IVCY (500 mg/body/pulse) plus high-dose glucocorticoids (0.8-1.0 mg/kg/day of prednisolone; IVCY group) or glucocorticoids alone (0.8-1.0 mg/kg/day of prednisolone; steroid group) in our hospital from 2000 through 2009 was conducted using a questionnaire survey and medical record review.</p> <p>Results</p> <p>Twenty-nine subjects in the IVCY group and 33 subjects in the steroid group returned the questionnaire. A multivariate analysis revealed that age at initiation of treatment ≥ 40 years old was significantly associated with amenorrhea [<it>p </it>= 0.009; odds ratio (OR) 10.2; 95% confidence interval (CI) 1.8-58.7]. IVCY treatment may display a trend for association with amenorrhea (<it>p </it>= 0.07; OR 2.9; 95% CI 0.9-9.4). Sustained amenorrhea developed in 4 subjects in the IVCY group and 1 subject in the steroid group; all of these patients were ≥ 40 years old. Menses resumed in all subjects < 40 years old, irrespective of treatment.</p> <p>Conclusions</p> <p>Although low-dose IVCY may increase the risk for amenorrhea, our data suggest that patients < 40 years old have a minimum risk for sustained amenorrhea with low-dose IVCY treatment. A higher risk for sustained amenorrhea following treatment with IVCY is a consideration for patients ≥ 40 years old.</p

    Sprouty2 mediated tuning of signalling is essential for somite myogenesis

    Get PDF
    Background: Negative regulators of signal transduction cascades play critical roles in controlling different aspects of normal embryonic development. Sprouty2 (Spry2) negatively regulates receptor tyrosine kinases (RTK) and FGF signalling and is important in differentiation, cell migration and proliferation. In vertebrate embryos, Spry2 is expressed in paraxial mesoderm and in forming somites. Expression is maintained in the myotome until late stages of somite differentiation. However, its role and mode of action during somite myogenesis is still unclear. Results: Here, we analysed chick Spry2 expression and showed that it overlaps with that of myogenic regulatory factors MyoD and Mgn. Targeted mis-expression of Spry2 led to inhibition of myogenesis, whilst its C-terminal domain led to an increased number of myogenic cells by stimulating cell proliferation. Conclusions: Spry2 is expressed in somite myotomes and its expression overlaps with myogenic regulatory factors. Overexpression and dominant-negative interference showed that Spry2 plays a crucial role in regulating chick myogenesis by fine tuning of FGF signaling through a negative feedback loop. We also propose that mir-23, mir-27 and mir-128 could be part of the negative feedback loop mechanism. Our analysis is the first to shed some light on in vivo Spry2 function during chick somite myogenesis

    H5N1 and 1918 Pandemic Influenza Virus Infection Results in Early and Excessive Infiltration of Macrophages and Neutrophils in the Lungs of Mice

    Get PDF
    Fatal human respiratory disease associated with the 1918 pandemic influenza virus and potentially pandemic H5N1 viruses is characterized by severe lung pathology, including pulmonary edema and extensive inflammatory infiltrate. Here, we quantified the cellular immune response to infection in the mouse lung by flow cytometry and demonstrate that mice infected with highly pathogenic (HP) H1N1 and H5N1 influenza viruses exhibit significantly high numbers of macrophages and neutrophils in the lungs compared to mice infected with low pathogenic (LP) viruses. Mice infected with the 1918 pandemic virus and a recent H5N1 human isolate show considerable similarities in overall lung cellularity, lung immune cell sub-population composition and cellular immune temporal dynamics. Interestingly, while these similarities were observed, the HP H5N1 virus consistently elicited significantly higher levels of pro-inflammatory cytokines in whole lungs and primary human macrophages, revealing a potentially critical difference in the pathogenesis of H5N1 infections. These results together show that infection with HP influenza viruses such as H5N1 and the 1918 pandemic virus leads to a rapid cell recruitment of macrophages and neutrophils into the lungs, suggesting that these cells play a role in acute lung inflammation associated with HP influenza virus infection. In addition, primary macrophages and dendritic cells were also susceptible to 1918 and H5N1 influenza virus infection in vitro and in infected mouse lung tissue
    corecore