8 research outputs found

    Profiling the HER3/PI3K Pathway in Breast Tumors Using Proximity-Directed Assays Identifies Correlations between Protein Complexes and Phosphoproteins

    Get PDF
    The identification of patients for targeted antineoplastic therapies requires accurate measurement of therapeutic targets and associated signaling complexes. HER3 signaling through heterodimerization is an important growth-promoting mechanism in several tumor types and may be a principal resistance mechanism by which EGFR and HER2 expressing tumors elude targeted therapies. Current methods that can study these interactions are inadequate for formalin-fixed, paraffin-embedded (FFPE) tumor samples.Herein, we describe a panel of proximity-directed assays capable of measuring protein-interactions and phosphorylation in FFPE samples in the HER3/PI3K/Akt pathway and examine the capability of these assays to inform on the functional state of the pathway. We used FFPE breast cancer cell line and tumor models for this study. In breast cancer cell lines we observe both ligand-dependent and independent activation of the pathway and strong correlations between measured activation of key analytes. When selected cell lines are treated with HER2 inhibitors, we not only observe the expected molecular effects based on mechanism of action knowledge, but also novel effects of HER2 inhibition on key targets in the HER receptor pathway. Significantly, in a xenograft model of delayed tumor fixation, HER3 phosphorylation is unstable, while alternate measures of pathway activation, such as formation of the HER3PI3K complex is preserved. Measurements in breast tumor samples showed correlations between HER3 phosphorylation and receptor interactions, obviating the need to use phosphorylation as a surrogate for HER3 activation.This assay system is capable of quantitatively measuring therapeutically relevant responses and enables molecular profiling of receptor networks in both preclinical and tumor models

    Synergistic anticancer effects of combined γ-tocotrienol with statin or receptor tyrosine kinase inhibitor treatment

    No full text
    Systemic chemotherapy is the only current method of treatment that provides some chance for long-term survival in patients with advanced or metastatic cancer. γ-Tocotrienol is a natural form of vitamin E found in high concentrations in palm oil and displays potent anticancer effects, but limited absorption and transport of by the body has made it difficult to obtain and sustain therapeutic levels in the blood and target tissues. Statins are inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A (HMGCoA) reductase and are an example of a promising cancer chemotherapeutic agent whose clinical usefulness has been limited due to high-dose toxicity. Similarly, erlotinib and gefitinib are anticancer agents that inhibit the activation of individual HER/ErbB receptor subtypes, but have shown limited clinical success because of heterodimerization between different EGF receptor family members that can rescue cancer cells from agents directed against a single receptor subtype. Recent studies have investigated the anticancer effectiveness of low-dose treatment of various statins or EGF receptor inhibitors alone and in combination with γ-tocotrienol on highly malignant +SA mouse mammary epithelial cells in vitro. Combined treatment with subeffective doses of γ-tocotrienol with these other chemotherapeutic agents resulted in a synergistic inhibition of +SA cell growth and viability. These findings strongly suggest that combined treatment of γ-tocotrienol with other anticancer agents may not only provide an enhanced therapeutic response but also provide a means to avoid the toxicity, low bioavailability, or limited therapeutic action associated with high-dose monotherapy

    Growth factor pleiotropy is controlled by a receptor Tyr/Ser motif that acts as a binary switch

    No full text
    Copyright © 2006 by the European Molecular Biology OrganizationPleiotropism is a hallmark of cytokines and growth factors; yet, the underlying mechanisms are not clearly understood. We have identified a motif in the granulocyte macrophage-colony-stimulating factor receptor composed of a tyrosine and a serine residue that functions as a binary switch for the independent regulation of multiple biological activities. Signalling occurs either through Ser585 at lower cytokine concentrations, leading to cell survival only, or through Tyr577 at higher cytokine concentrations, leading to cell survival as well as proliferation, differentiation or functional activation. The phosphorylation of Ser585 and Tyr577 is mutually exclusive and occurs via a unidirectional mechanism that involves protein kinase A and tyrosine kinases, respectively, and is deregulated in at least some leukemias. We have identified similar Tyr/Ser motifs in other cell surface receptors, suggesting that such signalling switches may play important roles in generating specificity and pleiotropy in other biological systems.Mark A Guthridge, Jason A Powell, Emma F Barry, Frank C Stomski, Barbara J McClure, Hayley Ramshaw, Fernando A Felquer, Mara Dottore, Daniel T Thomas, Bik To, C Glenn Begley and Angel F Lope

    Identifying Critical Signaling Molecules for the Treatment of Cancer

    No full text
    corecore