2,029 research outputs found

    The Small Scale Velocity Dispersion of Galaxies: A Comparison of Cosmological Simulations

    Full text link
    The velocity dispersion of galaxies on small scales (r∌1h−1r\sim1h^{-1} Mpc), σ12(r)\sigma_{12}(r), can be estimated from the anisotropy of the galaxy-galaxy correlation function in redshift space. We apply this technique to ``mock-catalogs'' extracted from N-body simulations of several different variants of Cold Dark Matter dominated cosmological models to obtain results which may be consistently compared to similar results from observations. We find a large variation in the value of σ12(1h−1Mpc)\sigma_{12}(1 h^{-1} Mpc) in different regions of the same simulation. We conclude that this statistic should not be considered to conclusively rule out any of the cosmological models we have studied. We attempt to make the statistic more robust by removing clusters from the simulations using an automated cluster-removing routine, but this appears to reduce the discriminatory power of the statistic. However, studying σ12\sigma_{12} as clusters with different internal velocity dispersions are removed leads to interesting information about the amount of power on cluster and subcluster scales. We also compute the pairwise velocity dispersion directly and compare this to the values obtained using the Davis-Peebles method, and find that the agreement is fairly good. We evaluate the models used for the mean streaming velocity and the pairwise peculiar velocity distribution in the original Davis-Peebles method by comparing the models with the results from the simulations.Comment: 20 pages, uuencoded (Latex file + 8 Postscript figures), uses AAS macro

    The Pairwise Peculiar Velocity Dispersion of Galaxies: Effects of the Infall

    Get PDF
    We study the reliability of the reconstruction method which uses a modelling of the redshift distortions of the two-point correlation function to estimate the pairwise peculiar velocity dispersion of galaxies. In particular, the dependence of this quantity on different models for the infall velocity is examined for the Las Campanas Redshift Survey. We make extensive use of numerical simulations and of mock catalogs derived from them to discuss the effect of a self-similar infall model, of zero infall, and of the real infall taken from the simulation. The implications for two recent discrepant determinations of the pairwise velocity dispersion for this survey are discussed.Comment: minor changes in the discussion; accepted for publication in ApJ; 8 pages with 2 figures include

    Scaling properties of the redshift power spectrum: theoretical models

    Get PDF
    We report the results of an analysis of the redshift power spectrum PS(k,ÎŒ)P^S(k,\mu) in three typical Cold Dark Matter (CDM) cosmological models, where ÎŒ\mu is the cosine of the angle between the wave vector and the line-of-sight. Two distinct biased tracers derived from the primordial density peaks of Bardeen et al. and the cluster-underweight model of Jing, Mo, & B\"orner are considered in addition to the pure dark matter models. Based on a large set of high resolution simulations, we have measured the redshift power spectrum for the three tracers from the linear to the nonlinear regime. We investigate the validity of the relation - guessed from linear theory - in the nonlinear regime PS(k,ÎŒ)=PR(k)[1+ÎČÎŒ2]2D(k,ÎŒ,σ12(k)), P^S(k,\mu)=P^R(k)[1+\beta\mu^2]^2D(k,\mu,\sigma_{12}(k)), where PR(k)P^R(k) is the real space power spectrum, and ÎČ\beta equals Ω00.6/bl\Omega_0^{0.6}/b_l. The damping function DD which should generally depend on kk, ÎŒ\mu, and σ12(k)\sigma_{12}(k), is found to be a function of only one variable kΌσ12(k)k\mu\sigma_{12}(k). This scaling behavior extends into the nonlinear regime, while DD can be accurately expressed as a Lorentz function - well known from linear theory - for values D>0.1D > 0.1. The difference between σ12(k)\sigma_{12}(k) and the pairwise velocity dispersion defined by the 3-D peculiar velocity of the simulations (taking r=1/kr=1/k) is about 15%. Therefore σ12(k)\sigma_{12}(k) is a good indicator of the pairwise velocity dispersion. The exact functional form of DD depends on the cosmological model and on the bias scheme. We have given an accurate fitting formula for the functional form of DD for the models studied.Comment: accepted for publication in ApJ;24 pages with 7 figures include

    Redshift-Space Distortions and the Real-Space Clustering of Different Galaxy Types

    Get PDF
    We study the distortions induced by peculiar velocities on the redshift-space correlation function of galaxies of different morphological types in the Pisces-Perseus redshift survey. Redshift-space distortions affect early- and late-type galaxies in different ways. In particular, at small separations, the dominant effect comes from virialized cluster cores, where ellipticals are the dominant population. The net result is that a meaningful comparison of the clustering strength of different morphological types can be performed only in real space, i.e., after projecting out the redshift distortions on the two-point correlation function xi(r_p,pi). A power-law fit to the projected function w_p(r_p) on scales smaller than 10/h Mpc gives r_o = 8.35_{-0.76}^{+0.75} /h Mpc, \gamma = 2.05_{-0.08}^{+0.10} for the early-type population, and r_o = 5.55_{-0.45}^{+0.40} /h Mpc, \gamma = 1.73_{-0.08}^{+0.07} for spirals and irregulars. These values are derived for a sample luminosity brighter than M_{Zw} = -19.5. We detect a 25% increase of r_o with luminosity for all types combined, from M_{Zw} = -19 to -20. In the framework of a simple stable-clustering model for the mean streaming of pairs, we estimate sigma_12(1), the one-dimensional pairwise velocity dispersion between 0 and 1 /h Mpc, to be 865^{+250}_{-165} km/s for early-type galaxies and 345^{+95}_{-65} km/s for late types. This latter value should be a fair estimate of the pairwise dispersion for ``field'' galaxies; it is stable with respect to the presence or absence of clusters in the sample, and is consistent with the values found for non-cluster galaxies and IRAS galaxies at similar separations.Comment: 17 LaTeX pages including 3 tables, plus 11 PS figures. Uses AASTeX macro package (aaspp4.sty) and epsf.sty. To appear on ApJ, 489, Nov 199

    On the streaming motions of haloes and galaxies

    Get PDF
    A simple model of how objects of different masses stream towards each other as they cluster gravitationally is described. The model shows how the mean streaming velocity of dark matter particles is related to the motions of the parent dark matter haloes. It also provides a reasonably accurate description of how the pairwise velocity dispersion of dark matter particles differs from that of the parent haloes. The analysis is then extended to describe the streaming motions of galaxies. This shows explicitly that the streaming motions measured in a given galaxy sample depend on how the sample was selected, and shows how to account for this dependence on sample selection. In addition,we show that the pairwise dispersion should also depend on sample type. Our model predicts that, on small scales, redshift space distortions should affect red galaxies more strongly than blue.Comment: 10 pages, submitted to MNRA

    The Bispectrum of IRAS Galaxies

    Full text link
    We compute the bispectrum for the galaxy distribution in the IRAS QDOT, 2Jy, and 1.2Jy redshift catalogs for wavenumbers 0.05<k<0.2 h/Mpc and compare the results with predictions from gravitational instability in perturbation theory. Taking into account redshift space distortions, nonlinear evolution, the survey selection function, and discreteness and finite volume effects, all three catalogs show evidence for the dependence of the bispectrum on configuration shape predicted by gravitational instability. Assuming Gaussian initial conditions and local biasing parametrized by linear and non-linear bias parameters b_1 and b_2, a likelihood analysis yields 1/b_1 = 1.32^{+0.36}_{-0.58}, 1.15^{+0.39}_{-0.39} and b_2/b_1^2=-0.57^{+0.45}_{-0.30}, -0.50^{+0.31}_{-0.51}, for the for the 2Jy and 1.2Jy samples, respectively. This implies that IRAS galaxies trace dark matter increasingly weakly as the density contrast increases, consistent with their being under-represented in clusters. In a model with chi^2 non-Gaussian initial conditions, the bispectrum displays an amplitude and scale dependence different than that found in the Gaussian case; if IRAS galaxies do not have bias b_1> 1 at large scales, \chi^2 non-Gaussian initial conditions are ruled out at the 95% confidence level. The IRAS data do not distinguish between Lagrangian or Eulerian local bias.Comment: 30 pages, 11 figure

    Optimal Weighting Scheme in Redshift-space Power Spectrum Analysis and a Prospect for Measuring the Cosmic Equation of State

    Get PDF
    We develop a useful formula for power spectrum analysis for high and intermediate redshift galaxy samples, as an extension of the work by Feldman, Kaiser & Peacock (1994). An optimal weight factor, which minimizes the errors of the power spectrum estimator, is obtained so that the light-cone effect and redshift-space distortions are incorporated. Using this formula, we assess the feasibility of the power spectrum analysis with the luminous red galaxy (LRG) sample in the Sloan Digital Sky Survey as a probe of the equation of state of the dark energy. Fisher matrix analysis shows that the LRG sample can be sensitive to the equation of state around redshift z=0.13. It is also demonstrated that the LRG sample can constrain the equation of state with (1-sigma) error of 10% level, if other fundamental cosmological parameters are well determined independently. For the useful constraint, we point out the importance of modeling the bias taking the luminosity dependence into account. We also discuss the optimized strategy to constrain the equation of state using power spectrum analysis. For a sample with fixed total number of objects, it is most advantageous to have the sample with the mean number density 10−4h3Mpc−310^{-4} h^3{\rm Mpc}^{-3} in the range of the redshift 0.4 \simlt z\simlt 1.Comment: 27 pages, 7 figures, Final version accepted for publication in Astrophysical Journa

    IRAS versus POTENT Density Fields on Large Scales: Biasing and Omega

    Get PDF
    The galaxy density field as extracted from the IRAS 1.2 Jy redshift survey is compared to the mass density field as reconstructed by the POTENT method from the Mark III catalog of peculiar velocities. The reconstruction is done with Gaussian smoothing of radius 12 h^{-1}Mpc, and the comparison is carried out within volumes of effective radii 31-46 h^{-1}Mpc, containing approximately 10-26 independent samples. Random and systematic errors are estimated from multiple realizations of mock catalogs drawn from a simulation that mimics the observed density field in the local universe. The relationship between the two density fields is found to be consistent with gravitational instability theory in the mildly nonlinear regime and a linear biasing relation between galaxies and mass. We measure beta = Omega^{0.6}/b_I = 0.89 \pm 0.12 within a volume of effective radius 40 h^{-1}Mpc, where b_I is the IRAS galaxy biasing parameter at 12 h^{-1}Mpc. This result is only weakly dependent on the comparison volume, suggesting that cosmic scatter is no greater than \pm 0.1. These data are thus consistent with Omega=1 and b_I\approx 1. If b_I>0.75, as theoretical models of biasing indicate, then Omega>0.33 at 95% confidence. A comparison with other estimates of beta suggests scale-dependence in the biasing relation for IRAS galaxies.Comment: 35 pages including 10 figures, AAS Latex, Submitted to The Astrophysical Journa

    Galaxy Clustering and Large-Scale Structure from z = 0.2 to z = 0.5 in Two Norris Redshift Surveys

    Full text link
    (abridged) We present a study of the nature and evolution of large-scale structure based on two independent redshift surveys of faint field galaxies conducted with the 176-fiber Norris Spectrograph on the Palomar 200-inch telescope. The two surveys together sparsely cover ~20 sq. degrees and contain 835 r < 21 mag galaxies with redshifts 0.2 < z < 0.5. Both surveys have a median redshift of z = 0.30. In order to obtain a rough estimate of the cosmic variance, we analyze the two surveys independently. We measure the comoving correlation length to be 3.70 +/- 0.13 h^-1 Mpc at z = 0.30 with a power-law slope gamma = 1.77 +/- 0.05. Dividing the sample into low (0.2 < z < 0.3) and high (0.32 < z < 0.5) redshift intervals, we see no evidence for a change in the comoving correlation length over the redshift range 0.2 < z < 0.5. Similar to the well-established results in the local universe, we find that intrinsically bright galaxies are more strongly clustered than intrinsically faint galaxies and that galaxies with little ongoing star formation, as judged from the rest-frame equivalent width of the [OII]3727, are more strongly clustered than galaxies with significant ongoing star formation. The rest-frame pairwise velocity dispersion of the sample is 326^+67_-52 km s^-1, ~25% lower than typical values measured locally. The appearance of the galaxy distribution, particularly in the more densely sampled Abell 104 field, is quite striking. The pattern of sheets and voids which has been observed locally continues at least to z ~ 0.5. A friends-of-friends analysis of the galaxy distribution supports the visual impression that > 90% of all galaxies at z < 0.5 are part of larger structures with overdensities of > 5.Comment: 40 pages including 26 Postscript figures; revised version to match version accepted by Ap

    The finite size effect of galaxies on the cosmic virial theorem and the pairwise peculiar velocity dispersions

    Full text link
    We discuss the effect of the finite size of galaxies on estimating small-scale relative pairwise peculiar velocity dispersions from the cosmic virial theorem (CVT). Specifically we evaluate the effect by incorporating the finite core radius rcr_c in the two-point correlation function of mass, i.e. Ορ(r)∝(r+rc)−γ\xi_\rho(r) \propto (r+r_c)^{-\gamma} and the effective gravitational force softening rsr_s on small scales. We analytically obtain the lowest-order correction term for Îł<2\gamma <2 which is in quantitative agreement with the full numerical evaluation. With a nonzero rsr_s and/or rcr_c the cosmic virial theorem is no longer limited to the case of Îł<2\gamma<2. We present accurate fitting formulae for the CVT predicted pairwise velocity dispersion for the case of Îł>2\gamma>2. Compared with the idealistic point-mass approximation (rs=rc=0r_s=r_c=0), the finite size effect can significantly reduce the small-scale velocity dispersions of galaxies at scales much larger than rsr_s and rcr_c. Even without considering the finite size of galaxies, nonzero values for rcr_c are generally expected, for instance, for cold dark matter (CDM) models with a scale-invariant primordial spectrum. For these CDM models, a reasonable force softening r_s\le 100 \hikpc would have rather tiny effect. We present the CVT predictions for the small-scale pairwise velocity dispersion in the CDM models normalized by the COBE observation. The implication of our results for confrontation of observations of galaxy pair-wise velocity dispersions and theoretical predictions of the CVT is also discussed.Comment: 18 pages. LaTeX text and 8 postcript figures. submitted to Ap
    • 

    corecore