18 research outputs found

    The disruption of proteostasis in neurodegenerative diseases

    Get PDF
    Cells count on surveillance systems to monitor and protect the cellular proteome which, besides being highly heterogeneous, is constantly being challenged by intrinsic and environmental factors. In this context, the proteostasis network (PN) is essential to achieve a stable and functional proteome. Disruption of the PN is associated with aging and can lead to and/or potentiate the occurrence of many neurodegenerative diseases (ND). This not only emphasizes the importance of the PN in health span and aging but also how its modulation can be a potential target for intervention and treatment of human diseases.info:eu-repo/semantics/publishedVersio

    Thermal transitions and structural relaxations in protein-based thermoplastics

    No full text
    Protein-based thermoplastics resemble semi-crystalline polymers, suggesting the occurrence of a glass transition (Tg) and melting point. Denaturing a protein's native structure is often called melting, but this does not necessarily imply complete unfolding into a fully amorphous structure as true melting would. Protein secondary structures, such as α-helices and ÎČ-sheets, can remain after denaturing, stay intact above the Tg and do not necessarily melt at typical processing temperatures. This implies that consolidation of aggregated protein particles into a macroscopically monolithic material depends on inter-chain interactions in the amorphous phase and on newly formed secondary structures. Structural relaxations and transition temperatures of the amorphous phase are influenced and constrained by the presence of these secondary structures as well as heavily influenced by plasticizers
    corecore