574 research outputs found

    Design of Efficient Algorithms Through Minimization of Data Transfers

    Get PDF
    This thesis explores the time optimal implementation of computational graphs on a finite register machine. The implementation fully exploits the machine architecture, especially, the number of registers. The derived algorithms allow one to obtain time efficient implementations of a given graph in machines with a known number of registers. These optimization procedures are applied to digital signal processing graphs. It is shown that the regular structure of these graphs allows one to identify computational kernels which, when used repeatedly, can cover the entire graph. The l- and r-register implementations of Hadamard and Fast Fourier Transforms using various computational kernels are studied for their code sizes and time complexities. The results obtained also allow one to select an optimal hardware devoted to a particular computational applicatio

    Motif-aware temporal GCN for fraud detection in signed cryptocurrency trust networks

    Full text link
    Graph convolutional networks (GCNs) is a class of artificial neural networks for processing data that can be represented as graphs. Since financial transactions can naturally be constructed as graphs, GCNs are widely applied in the financial industry, especially for financial fraud detection. In this paper, we focus on fraud detection on cryptocurrency truct networks. In the literature, most works focus on static networks. Whereas in this study, we consider the evolving nature of cryptocurrency networks, and use local structural as well as the balance theory to guide the training process. More specifically, we compute motif matrices to capture the local topological information, then use them in the GCN aggregation process. The generated embedding at each snapshot is a weighted average of embeddings within a time window, where the weights are learnable parameters. Since the trust networks is signed on each edge, balance theory is used to guide the training process. Experimental results on bitcoin-alpha and bitcoin-otc datasets show that the proposed model outperforms those in the literature

    A model for assessing water quality risk in catchments prone to wildfire

    Get PDF
    Post-fire debris flows can have erosion rates up to three orders of magnitude higher than background rates. They are major sources of fine suspended sediment, which is critical to the safety of water supply from forested catchments. Fire can cover parts or all of these large catchments and burn severity is often heterogeneous. The probability of spatial and temporal overlap of fire disturbance and rainfall events, and the susceptibility of hillslopes to severe erosion determine the risk to water quality. Here we present a model to calculate recurrence intervals of high magnitude sediment delivery from runoff-generated debris flows to a reservoir in a large catchment (>100 km2) accounting for heterogeneous burn conditions. Debris flow initiation was modelled with indicators of surface runoff and soil surface erodibility. Debris flow volume was calculated with an empirical model, and fine sediment delivery was calculated using simple, expert-based assumptions. In a Monte-Carlo simulation, wildfire was modelled with a fire spread model using historic data on weather and ignition probabilities for a forested catchment in central Victoria, Australia. Multiple high intensity storms covering the study catchment were simulated using Intensity–Frequency–Duration relationships, and the runoff indicator calculated with a runoff model for hillslopes. A sensitivity analysis showed that fine sediment is most sensitive to variables related to the texture of the source material, debris flow volume estimation, and the proportion of fine sediment transported to the reservoir. As a measure of indirect validation, denudation rates of 4.6–28.5 mm ka−1 were estimated and compared well to other studies in the region. From the results it was extrapolated that in the absence of fire management intervention the critical sediment concentrations in the studied reservoir could be exceeded in intervals of 18–124 years

    High-speed focal modulation microscopy using acousto-optical modulators

    Get PDF
    Focal Modulation Microscopy (FMM) is a single-photon excitation fluorescence microscopy technique which effectively rejects the out-of-focus fluorescence background that arises when imaging deep inside biological tissues. Here, we report on the implementation of FMM in which laser intensity modulation at the focal plane is achieved using acousto-optic modulators (AOM). The modulation speed is greatly enhanced to the MHz range and thus enables real-time image acquisition. The capability of FMM is demonstrated by imaging fluorescence labeled vasculatures in mouse brain as well as self-made tissue phantom

    Metabolic Patterns and Biotransformation Activities of Resveratrol in Human Glioblastoma Cells: Relevance with Therapeutic Efficacies

    Get PDF
    -resveratrol rather than its biotransformed monosulfate metabolite exerts anti-medulloblastoma effects by suppressing STAT3 activation. Nevertheless, its effects on human glioblastoma cells are variable due to certain unknown reason(s).Citing resveratrol-sensitive UW228-3 medulloblastoma cell line and primarily cultured rat brain cells/PBCs as controls, the effect of resveratrol on LN-18 human glioblastoma cells and its relevance with metabolic pattern(s), brain-associated sulfotransferase/SULT expression and the statuses of STAT3 signaling and protein inhibitor of activated STAT3 (PIAS3) were elucidated by multiple experimental approaches. Meanwhile, the expression patterns of three SULTs (SULT1A1, 1C2 and 4A1) in human glioblastoma tumors were profiled immunohistochemically. The results revealed that 100 µM resveratrol-treated LN-18 generated the same metabolites as UW228-3 cells, while additional metabolite in molecular weight of 403.0992 in negative ion mode was found in PBCs. Neither growth arrest nor apoptosis was found in resveratrol-treated LN-18 and PBC cells. Upon resveratrol treatment, the levels of SULT1A1, 1C2 and 4A1 expression in LN-18 cells were more up-regulated than that expressed in UW228-3 cells and close to the levels in PBCs. Immunohistochemical staining showed that 42.0%, 27.1% and 19.6% of 149 glioblastoma cases produced similar SULT1A1, 1C2 and 4A1 levels as that of tumor-surrounding tissues. Unlike the situation in UW228-3 cells, STAT3 signaling remained activated and its protein inhibitor PIAS3 was restricted in the cytosol of resveratrol-treated LN-18 cells. No nuclear translocation of STAT3 and PIAS3 was observed in resveratrol-treated PBCs. Treatment with STAT3 chemical inhibitor, AG490, committed majority of LN-18 and UW228-3 cells but not PBCs to apoptosis within 48 hours.LN-18 glioblastoma cells are insensitive to resveratrol due to the more inducible brain-associated SULT expression, insufficiency of resveratrol to suppress activated STAT3 signaling and the lack of PIAS3 nuclear translocation. The findings from PBCs suggest that an effective anticancer dose of resveratrol exerts little side effect on normal brain cells
    corecore