
Old Dominion University Old Dominion University

ODU Digital Commons ODU Digital Commons

Electrical & Computer Engineering Theses &
Dissertations Electrical & Computer Engineering

Fall 1983

Design of Efficient Algorithms Through Minimization of Data Design of Efficient Algorithms Through Minimization of Data

Transfers Transfers

Yong Mo Chong
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/ece_etds

 Part of the Computational Engineering Commons, and the Signal Processing Commons

Recommended Citation Recommended Citation
Chong, Yong M.. "Design of Efficient Algorithms Through Minimization of Data Transfers" (1983). Master
of Science (MS), Thesis, Electrical & Computer Engineering, Old Dominion University, DOI: 10.25777/zkjm-
z906
https://digitalcommons.odu.edu/ece_etds/164

This Thesis is brought to you for free and open access by the Electrical & Computer Engineering at ODU Digital
Commons. It has been accepted for inclusion in Electrical & Computer Engineering Theses & Dissertations by an
authorized administrator of ODU Digital Commons. For more information, please contact
digitalcommons@odu.edu.

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/ece_etds
https://digitalcommons.odu.edu/ece_etds
https://digitalcommons.odu.edu/ece
https://digitalcommons.odu.edu/ece_etds?utm_source=digitalcommons.odu.edu%2Fece_etds%2F164&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/311?utm_source=digitalcommons.odu.edu%2Fece_etds%2F164&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/275?utm_source=digitalcommons.odu.edu%2Fece_etds%2F164&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ece_etds/164?utm_source=digitalcommons.odu.edu%2Fece_etds%2F164&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

DESIGN OF EFFICIENT ALGORITHMS THROUGH
MINIMIZATION OF DATA TRANSFERS

by

Yong Mo Chong
B.S.E.E. May 1981 Old Dominion University

A Thesis Submitted to the Faculty of
Old Dominion University in Partia l Fulfillm ent of the

Requirements for the Degree of

MASTER OF ENGINEERING

ELECTRICAL ENGINEERING

OLD DOMINION UNIVERSITY
November 1983

Approved by:

Meghanad D. Wagh (Director)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

©Copyright by Yong M. Chong 1983

A ll Rights Reserved

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

DESIGN OF EFFICIENT ALGORITHMS THROUGH
MINIMIZATION OF DATA TRANSFERS

Yong M. Chong
Old Dominion University

Director: Meghanad D. Wagh

This thesis explores the time optimal implementation of

computational graphs on a f in ite register machine. The implementation

fu l ly exploits the machine architecture, especially, the number of

registers. The derived algorithms allow one to obtain time e ffic ie n t

implementations of a given graph in machines with a known number of

registers.

These optimization procedures are applied to d ig ita l signal

processing graphs. I t is shown that the regular structure of these

graphs allows one to identify computational kernels which, when used

repeatedly, can cover the entire graph. The 1- and r-reg is ter

implementations of Hadamard and Fast Fourier Transforms using various

computational Kernels are studied for the ir code sizes and time

complexities. The results obtained also allow one to select an optimal

hardware devoted to a particular computational application.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGMENT

I would like to thank Dr. Meghanad D. Wagh for his patience,

guidance, and help during the research. This work would not have been

possible without his enthusiasm, insight and encouragement. In

addition, his assistance during the preparation of this thesis was

appreciated since i t was the result of many long nights together.

I would also . line to acknowledge the other members of my thesis

committee, Dr. Sherad Kanetkar and Dr. John W. Stoughton, for the ir time

and consideration. Thames are also due to Teri M. Owens for her

assistance in preparing this thesis.

i i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

iii

TABLE OF CONTENTS

PAGE

LIST OF TABLES ... iv

LIST OF FIGURES ... v

LIST OF SYMBOLS ... v ii

CHAPTER

1 INTRODUCTION .. 1
1. Background.. 1
2. Computer A rch itectu re ... 3
3. Problem Identification .. 6
4. Unique approach to the Problem 7
5. O verv iew .. 8

2 COMPUTATIONALLY ORGANIZED BLOCK: 1-DIMENSION 9
1. Graph Theory Preliminaries .. 10
2. Computationally Organized Block (COB) 15
3. Complexity of 1-Register Implementation 16
4. Algorithm for Implementation of a 1-Register Machine . 18
5. Example... 24

3 COMPUTATIONALLY ORGANIZED BLOCK: R-DIMENSION 27
1. Time Complexity of R-Dimensional COBs 27
2. R-Dimensional COB Algorithm .. 29
3. Example... 33

4 APPLICATIONS .. 42
1. Primitive COB.. 42
2. Hadamard Transform (H T) ...47
3. Implementation of a Complete HT Through

Primitive COBs ... 65
4. Fast Fourier Transform (FFT) .. 68

8
5. Implementation of 2 Length FF T ... 72

5 CONCLUSIONS .. 75
1. Summary of Selected Results .. 75
2. Significance of the Results .. 76
3. Suggestions fo r Further Work .. 77

LIST OF REFERENCES... 79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

iv

LIST OF TABLES

PAGE
CHAPTER 1

1.1 Execution times (in usee) for various micropro­
cessors 2

CHAPTER 4

4.1 Dependence of the complexities of two d ifferent
implementations upon the number of registers in
the machine... 43

4.2 Comparison of implementations with and without
prim itive C O B s... 46

4.3 Complexities of various implementations of HT
prim itive C O B s... 64

4.4 Change in the values of Eta for various prim itive
C O B s... 65

12
4.5 Implementation of 2 length H T ... 68

4.6 Complexities of various implementations of FFT
prim itive C O B s... 72

8
4.7 Implementation cf 2 length F F T ... 73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

V

LIST OF FIGURES

PAGE
CHAPTER 1

1.1 SISD architecture .. 5

CHAPTER 2

2.1 Graphical and alternate representation of a computation . . 11

2.2 Basic representation of a graph .. 13

2.3 Four topological sorts of the graph in Fig. 2.2 14

2.4 Example of a 1-dimensional COB .. 17

2.5 Example of a 2-dimensional COB .. 17

2.6 A computational graph and its 1-dimensional COB cover . . . 26

CHAPTER 3

3.1 The four basic transformations used to form computable
p a th s ... 31

3.2 Computational graph of 4-point FFT ... 34

3.3 1-dimensional COB cover of the 4-point FFT graph 35

3.4 Equivalent 1-register COB cover of the 4-point FFT graph . 36

3.5 2-dimensional COB cover of the 4-point FFT graph 40

3.6 3-dimensional COB cover of the 4-point FFT graph 40

3.7 4- through 9-dimensional COB covers of the 4-point FFT
graph... 41

CHAPTER 4

4.1 A computational graph with 63 p o in t s 44

4.2 Primitive COBs for implementation of the graph in
Fig. 4 . 1 ... 44

4.3 Various implementation of 3- and 7-point primitive COBs . . 45

4.4 Cover of complete graph using 3- and 7-point prim itive
C O B s... 45

4.5 1-register implementation of H T ... 48

4.6 2-register implementation of H T ... 53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

vi

PAGE
CHAPTER 4 (CONTINUED)

4.7 The three types of bu tterfly implementations prevalent
in the 2-register implementation of HT 57

4.8 3-register implementation of HT .. 59

12
4.9 Time complexity of various implementations of 2 length

H T ... ; 67

4.10 Computational graph of 2-point FFT ... 70

4.11 1- and 2-dimensional COB cover of 2-point F F T 71

8
4.12 Time complexity of various implementations of 2 length

F F T .. 74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF SYMBOLS

SYMBOL MEANING

Ci 1-th Computationally Organized Block (COB)

G Computational graph

r Number of registers

P Set of computational points

U Union

Vi i- th computable path

e Belong to

/ Not belong to

0 Nul1 set

<= Subset

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1

INTRODUCTION

1.1 Background

The past two decades have seen rapid strides in the area of d ig ita l

signal processing. Many new signal processing techniques were designed

and many new applications were discovered. However, most of the e ffo rt

in this area was concentrated on reducing the complexity of the

algorithms involved. Since signal processing algorithms are used

repeatedly (and in some cases, continuously) for d ifferent data sets, a

small reduction in th e ir complexity results in a large saving of

practical resources. In addition, the demanding real time applications

of signal processing techniques are becoming increasingly popular.

A reduction in time complexity may be achieved by employing

hardware techniques such as paralle l processing and pipelining, by using

faster technologies, or by restructuring computational algorithms so

that the time intensive operations are reduced. The least expensive of

these, the th ird a lternative, is the subject of this thesis.

Traditionally , only the m ultiplication was viewed as the time

consuming operation. However, several breakthroughs in technology have

now reduced the m ultiplication time sign ificantly . As a resu lt, both

the number of m ultiplications and additions in an algorithm are

generally used to estimate its computational complexity. The

unsuitability of even this complexity measure may be illustra ted by

pointing out a case of great practical significance. A Fourier

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2

transform algorithm designed by Winograd (WFTA) in 1976 [1] had a

smaller number of m ultiplications and additions and was therefore

immediately accepted as a replacement for the fast Fourier transform

(FFT) [2] . However, an implementation of WFTA on PDP 11/55 and IBM

370/168 was found to be much slower, than that of FFT [3] . This

discrepancy could be explained only a fte r a detailed operation count was

maintained. I t was found that on a PDP11/55 (using Assembler), for

example, a 1008 point WFTA required 14.6 msec less time for

multiplications than FFT, but simultaneously, used up 40.1 msec more for

the memory reference operations resulting in an implementation that was

45% slower than the FFT. The fac t that memory referencing is very time

intensive may also be understood by examining Table 1.1 which compares

the times for various operations in many general purpose microprocessors

available today. Even though the importance of reducing the number of

memory reference operations is thus obvious, l i t t l e has been done about

i t to date. There are two main reasons for th is . F irs tly , the

realization of the importance of these operations is rather recent, and

secondly, there does not exist a mathematical model which may, in rather

systematic manner, pave the way to such optimization.

Table 1.1. Execution times (in usee) fo r various microprocessors [4 -8].

microproc. 8080 6800 Z-80 8085A 8086 68000 Z8000 TMS9900

clx. cycle 2.0 1.0 0.5 .32 0.2 0.125 0.25 .3333

Load 7 4 4 4.16 2.8 2.0 3.00 7.30
Store 7 4 4 4.16 3.0 2.125 3.50 7.30
Mop(+,-) 7 4 5 n/a 3.0 1.125 3.75 7.32
Copy 5 2 1 1.28 0.4 0.5 0.75 4.60
Rop(+,-) 4 2 1 1.28 0.6 0.5 1.00 4.60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Compiler designers had realized the importance of reducing memory

fetches as early as in 1964. In that year, Anderson designed an

algorithm for compiling a computation expressed as a tree using a stack

of local registers [9]. His results were la te r extended by Nakada who

obtained compiling algorithm for arithmetic expressions in computers

with n accumulators [10]. His algorithm generated an object code

which minimized the frequency of storing and was used in a FORTRAN IV

compiler for the HITAC-5020 computer which has 14 accumulators. In a

computer with limited core memory, a large amount of data has to be

stored on a slow, external memory device. Thus while solving problems

on such machines, one needs to minimize the reads and writes to that

slow memory. Specific algorithm implementations which distinguish

between slow and fast memory and reduce references to the slow memory

have also been reported. Both Brenner [11] and Naidu [12] have studied

computation of FFT of a large sequence resident in an external device

such as disk. S im ilarly, Eklundh [13] and Naidu [14] have implemented

fast transposition of matrices too large to be stored in fast memory.

More recently, Nawab and McClellan have done a detailed analysis of

implementation of WFTA and FFT on f in ite register machines and have

found optimum number of registers for d ifferent length WFTA [15].

1.2 Computer Architecture

One possible defin ition of computer architecture is the

characteristics of a machine as seen by a programmer. In general, i t is

d if f ic u lt to categorize d ifferent computer architectures because of the

numerous variations. One possible scheme proposed by Flynn [16] is to

divide computer architectures into four d istinct categories: SISD

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(Single-Instruction-Stre?m/Single-Data-Stream), SIMD (Single-

Instruction-Stream/Multiple-Data-Stream), MISD (M ultiple-Instruction-

Streara/Single-Data-Streain), and HIMD (Multiple-Instruction-

Stream/Nultiple-Oata-Stream). With the exception of SISD, a l l

categories use some type of parallel processing with multiple

processors. The SISD architecture has only one processor which uses one

instruction per instruction cycle. Almost a l l general purpose computers

and microprocessor systems f a l l in SISD category. For this reason, the

remainder of this thesis addresses only the SISD architecture. A

typical SISD architecture has a local register f i le and a large main

memory as shown in Fig. 1.1.

The instructions in SISD architecture may be divided in two

categories: memory referenced and local register referenced. A memory

referenced instruction is one in which an operand resides in memory. A

local register instruction, on the other hand, does not access the

memory.

For th is study, the set of instructions is restricted to the

following:

Load : Rn * Mj (Load Register-n from Memory-j)
Store : Mj ♦ Rn (Store Register-n in Memory-j)
Mop(*): Rn * Rn * Mj (+,-»x

(Copy
Memory-j to Register-n)

Copy : Rn ♦ Rm Register-m to Register-n)
Rop(*): Rn ♦ Rn * Rm (+ ,- ,x Register-m to Register-n)

The execution times for these instructions are dependent upon the types

of operations and the specific architecture of the machine. Further,

for memory related instructions (Load, Store, and Mop(*)), i t also

depends upon the addressing mode. However, in most cases, (see Table

1.1) the execution of memory reference instructions (Load, Store, and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LOCAL
REGISTERS

LARGE MAIN MEMORY

CACHE
MEMORY

ALU

Fig. 1.1 SISD architecture.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6
Mop(*)) is slower than the equivalent local register instructions (Copy

and Rop(*)). This time difference between the two types of instructions

is inherent to SISD architecture and may be attributed to the

comparatively large access time of memory.

The following normalized times (suggested by actual times lis ted in

Table 1.1) are used in this work to denote the re la tive time complexity

of these instructions.

Tload = 2 units
Tstore = 2 units
Tmop(+,-)= 2 units
Tmop(x) = 4 units
Tcopy = 1 unit
Trop(+,-)= 1 unit

I t should be noted that the time differences (Tload-Tcopy), (Tstore-

Tcopy), and (Tm op(+,-,x)-Trop(+,-,x)), are chosen to be exactly equal,

because they a l l are identical to the memory access delay of the

architecture.

1.3 Problem Identification

Recalling the disscussion in e a rlie r sections, two problems faced

by d ig ita l signal processing engineers can be easily id en tified .

F irs tly , given a machine, how best to exploit its architectural features

in order to obtain an e ffic ie n t implementation of any signal processing

algorithm. Since signal processing algorithms are used over and over

again, any small improvement in th e ir complexity without calling fo r an

improved hardware is immensely useful.

Secondly, given an algorithm, i f one is to construct a special

purpose hardware for its implementation, what should be the

architectural features that be b u ilt in the hardware. Since the cost of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the hardware increases with every new feature added, one must have a

clear understanding of the advantages th is new feature w ill provide.

The results obtained in this thesis are f i r s t steps towards the

solution to these problems. For example, by exploiting the two

accumulator feature in a machine (say a 6800 microprocessor) as shown

herein, one may improve the computational time of the Fast Fourier

Transform by 35.29%. Sim ilarly, the results obtained here demonstrate

that a hardware for implementing the Hadamard Transform need not have

more than three accumulators, since the gain due to more registers is

marginal.

1.4 Unique Approach to the Problem

A directed graph is used here to model a computational algorithm.

The nodes of the graph represent actual computations and the edges

represent the order between various computations. Since the aim here is

to minimize the memory reference operations, the graph is partitioned

into subgraphs (called COBs) each of which may be evaluated without any

memory reference on a given hardware configuration. This enables one to

identify the memory reference operations with the graph edges not

included in any COB. In order to minimize such edges, a two step

approach is used. F irs t, the given graph is partitioned into COBs

suitable for a one accumulator architecture. Next, an accumulator is

added to the machine and the COB cover is modified to take into account

the a v a ila b ility of the extra register. This second step is repeated

un til a ll available registers are used. In addition, the regularity in

a signal processing graph is exploited to identify the computational

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8
Kernels and to implement the graph by repeating the implementation of

the Kernel.

1.5 Overview

Chapter 2 o f this thesis reviews some graph theoretic preliminaries

required la te r. I t also defines the Computationally Organized Block

(COB) of arbitrary dimension and presents an algorithm to partition the

given graph into 1-dimensional COBs. A procedure to cover the graph

using r-dimensional COBs (r > 2) is presented and illustrated in Chapter

3. Using the algorithms, Chapter 4 explores the implementation of

e ffic ie n t algorithms for Hadamard Transform(HT) and Fast Fourier

Transform(FFT). This chapter also defines and uses the concept of a

prim itive COB. F ina lly , Chapter 5 concludes this thesis by summarizing

the results obtained and pointing out directions for future research.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2
COMPUTATIONALLY ORGANIZED BLOCK: 1-DIMENSION

As has been stated in Chapter 1, the major thrust of this thesis is

the establishment of a mathematical model appropriate for description

and implementation of a signal processing algorithm on a f in ite register

machine. Computational graphs fo r signal processing algorithms are

unlike the computational graphs studied in e a rlie r lite ra tu re in that

they do not have the tree structures and instead have feed-forward

paths. This chapter is devoted to the investigation and modelling of

such graphs.

Section 2.1 describes the nomenclature and the basic properties of

signal processing graphs. Based on these properties, Section 2.2 then

derives the mathematical models for such computations in a f in ite

register machine. The basic approach here consists of partitioning the

graph into modules, each of which may be computed independently in a

machine with ’r ' registers without, making a reference to the memory

external to the CPU. These modules are designated herein as

COMPUTATIONALLY ORGANIZED BLOCKS (COBs) of dimension r . Since the

computations within a COB do not require any memory fetches or stores,

the complexity of the algorithm in terms of the number of memory

references, then, is determined solely by the number of graph edges

joining different COBs. This is shown in Section 2.3. An algorithm to

obtain an implementation in terms of 1-dimensional COBs is presented in

Section 2.4. and illustra ted through an example in Section 2.5.

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10

2.1 Graph Theory Preliminaries

A computational algorithm can always be represented as a directed

graph. Points in such a graph stand for computational nodes and a

directed edge from PI to P2 indicates the involvement of the resu lt at

PI in the computation P2. A lternately, a directed graph G=(P,E) can be

represented by a set of points P and a set of ordered pairs, E={(x,y)|

x,y e P} as Figure 2.1 illu s tra te s . Note that in this figure, points

A,B,C,D and the dotted lines shown in the graphical representation are

not rea lly part of the computational graph and w ill not be shown in

graphs encountered la te r. . We now give some basic definitions and

results from graph theory, which would be used la te r.

Partia l Order:

A set Ec P x P of ordered pairs is said to be a partia l order i f

i t is weaxly antisymmetric (i . e . , i f (x,y) e E, then (y,x) f. E for

x t y) reflexive (i . e . , (x ,x) e E for a l l x e P) and transitive

(i . e . , i f (x ,y) ,(y ,z) £ E then (x ,z) e E for a ll x ,y ,z e P). In

representing computational graphs we w ill relax the re fle x iv ity

requirement which implies a loop at every computational node. Every

computational graph is then a partia l order.

Total Order:

In addition to the partia l order, i f the set Ec P x P is such that

for any x,y £ P either (x,y) e E or (y,x) e E or x=y, then E is

called a to ta l order. We w ill show that 1-dimensional COBs are

subgraphs with to ta l order.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12

Indegree, Outdegree:

Let Iy={x I (x ,y) e E} and Oy={x I (y ,x) c E}. Then IIy | and |Oy| are

called the indegree and the outdegree of point y respectively. In a

computational graph, indegree of a point can only be 0, 1 or 2 since

we deal only with the binary operations.

Minimal, Maximal points:

Points in a graph with indegree zero are called minimal points.

Sim ilarly points with outdegree zero are called maximal points.

Path:

An ordered n-tuple (X l,X 2 ,...X n) with (X i,X i+ l) e E for i= l ,2 . .N - l ,

is called a path of length n-1 in the graph G=(P,E).

Acyclic Graph:

A graph with no path with idendical f i r s t and last points and length

> 2 is called an acyclic graph. A computational graph is always

acyclic for the following simple reason. (X i,X i+ l) e E implies the

computation of point Xi+1 requires the result from point X i. Now i f

a sequence (X1,X2,X3----- Xn-1, Xn=Xl) with (X i,X i+ l) e E for

i= l , 2 ,3 , . . . ,n - l exists, then i t implies that the computation of Xn

requires Xn-1, which in turn requires X n-2 Proceeding in this

manner, we conclude that computation of Xn, which is re a lly X I,

requires X2. But since (XI,X2) e E computation of X2 requires XI

and thus this computation cannot be carried out.

Basic Representation of a Graph:

A subgraph obtained by eliminating from the original edge set every

pair (X,Y) for which there is a path between X and Y of length >. 2

is known as the basic representation of the graph. Figure 2.2 shows

a graph and its basic representation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14

Topological Sort:

Topological sort of a graph G=(P,E) is a graph G"=(P»E") such that G'

has only one minimal point of outdegree one, only one maximal point

of indegree one, indegree and outdegree of a l l points except these

are one, and a path from X to Y (X,Y e P) in G implies a path from X

to Y in G'. Figure 2.3 illu s tra tes topological sorts.

m m Q
A B E D C H G J K I F I

a b e o i g c j f k h l

8 A E D G C I J H K L F

8 A E D I F G J C K L H

Fig. 2 .3. Four topological sorts of the graph in Fig 2.2.

The following results from graph theory are required in this thesis

[18].

Theorem 2.1
The restric tion of any partia l order is its e lf a
partia l order.

Theorem 2.2
In a f in ite nonempty p a rtia lly ordered set, there is
at least one maximal and one minimal element.

Theorem 2.3
I f graph G is acyclic, then there exists a unique
basic representation.

Theorem 2.4
Topological sort of a f in ite graph G=(P,E) exists i f
and only i f G 'is acyclic. Further, this topological
sort is unique i f and only i f E is a to ta l order
re lation , in which case this sort is the basic
representation of G.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

15

2.2 Computationally Organized Block(COB)

In th is section, the concept of Computationally Organized Block

(COB) is defined. . Then, the computational complexity of an algorithm is

related to the partitioning of its graph into various COBs.

Definition of an r-dimensional COB:

Let G=(P,E) be an acyclic computational graph. Let Gy=(Y,Ey) denote

the subgraph obtained by restric ting the set of points to Y <= P.

Then, COB Gy' of dimension r is a subgraph Gy'= (Y,Ey')» Ey' <= Ey

with the following property:

The computation represented by Gy' can be performed in a SISD

architecture machine with ’ r* registers without any store

operations.

For la te r use, for every COB, we define an integer function n (.) with

domain Y such that

(i) n(A) < n(B) i f there exists a path from point A to point B in

graph G.

(i i) n(A)*i(B) i f A # .

Since 1-dimensional COBs are paths in the original graph and a path

in an acyclic graph is a to ta l order, the points in every 1-dimensional

COB form a to ta l order.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16
Example of a COB of dimension 1:

In graph G of Fig. 2 .4 , the subgraph Gy' =(Y,Ey') is a COB of

dimension 1, where Y ={A,B,C,D} and Ey'={(A ,B),(B ,C),(C ,D)}. I t may be

implemented as R1 F, R1 R1+G, R1 R1+E, R1 Rl+J, R1 R1+M1.

Example of a COB of dimension 2:

In graph G of Fig. 2 .5 , the subgraph Gy' =(Y,Ey') is a COB of

dimension 2, where Y={A,B ,C ,...,H} , and Ey' = {(A,B), (B,C), (B,D),

(D,E), (E ,F), (E,H), (E,G)}. I t may be implemented as R1 L, Rl-*- Rl+M,

Ml «- R l, R1 «- Rl+K, R2 «- Rl, R1 «■ Rl+Ml, R2 * R2+N, R2 «- R2+0, R1 «- R2,

R2 ♦ R2+J, R2 R l, R2 <- R2+P, Rl ♦ R l+ I.

2.3 Complexity of 1-Register Implementation

As can be noted from Fig. 2 .4 , a one register COB is a to ta l order

and except for the m inim al(first) point which needs to be evaluated

through a Load and a Mop(+), a l l other points in the COB are computed

only through a Mop(+) each. S im ilarly only the maximal(last) point and

points with outdegree^ 2 need to be stored in the memory. I f a

computational graph is covered by 1-register COBs, the complexity of the

complete graph may be obtained by summing the complexity associated with

the points in each COB. This immediately gives following complexity of

1-register implementation of the to ta l graph.

Number of Loads = Number of COBs

Number of Mop(+)= Total number of points in the graph

Number of Stores= Number of points in the graph with outdegree _> 2
+ Number of COBs with last point outdegree < 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

O R I G I N A L G R A P H

Fig. 2.4.

O O'

O R I G I N A L G R A P H

Fig. 2.b.

Example of a

L

J

P-'K 0 \ C
\ %

X

- P °

Nl

O N E D I M E N S I O N A L C OO

-dimensional COB.

Ml

T H O D I M E N S I O N A L C O O

Example of a 2-dimensional COB.

18
From the assumptions in Chapter 1, each of these operations take exactly

two units of time, and hence the to ta l time complexity of computation

T =(# of Loads)+(# of Mop(+))+(# of Stores)

= [(to ta l number of points in the graph)
+(number of points with outdegree >_Z in the graph)]
+ [(number of COBs)+(number of COBs with last point

outdegree < 2)] .

I t should be noted here that both the terms in the f i r s t square bracket

are to ta lly dependent on the given computational graph. On the other

hand, the terms in the second square bracket, namely, the number of COBs

and number of COBs with last point1 s outdegree < 2 are dependent upon

the manner in which the COBs are chosen.

2.4 Algorithm for Implementation of a One Register Machine

I t was shown in Section 2.3 that the time complexity of an

implementation on a 1-register machine is largely dependent upon the

number of one dimensional COBs covering the graph. In th is section, we

present a heuristic algorithm which partitions the original graph into

one register COBs in a manner which minimizes the to ta l number of COBs.

This partitioning would be referred to as a 1-dimensional COB cover of

the graph. Since a l l points within a COB are evaluated consecutively,

computability of the implementation for the entire algorithm demands

that the graph obtained by replacing every COB by a point should s t i l l

be acyclic. Following algorithm guarantees this property of the COB

cover.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Step 1(In it ia liz a tio n)

Set i= l and le t G = (P ',E ') be the Basic Representation of G.

Step 2(Computable path determination)

Find a ll computable paths in G'. A path (X 1 ,X 2 ,..,X t) is a

computable path i f

a. XI is a minimal point of G'.

b. (X j,X j+ l) e E \ j= l , 2 , . . , t - l .

c. Xj has indegree one fo r j= 2 ,3 , . . , t .

d. Either Xt is a maximal point of G' or, fo r every X e ? '

such that (Xt,X) e E ' , there exists Y e ? ' such that

(Y,X) e E' and Y / Xi for 1=1.2,__ » i- l -

Step 3(Choosing a COB)

(a). I f a computable path has a maximal point, choose the path as

COB Ci = (P i,E i) and go to step 4. (I f there is more than one

computable path with maximal point, one may choose any of

them.)

(b). Generate graph G" from G' by deleting a l l points on a ll

computable paths. Let S denote the set of minimal points

of G". Find, i f possible, computable paths V l,V 2 ,...,V n with

terminal points X l,X 2 ,...,X n respectively such that for

i= l , 2 , . . . ,n there exist (not necessarily d istinct) Yi e S

satisfying (X i,Y i) e E' and for any X f. VI U V2 U . . . U Vn,

(X ,Y i) f. E . Choose the path VI as COB Ci=(P i,E i) and go to

step 4.

(c). Find computable paths V I, V 2 , . . . , Vn with terminal points

X l,X 2 ,...,X n respectively such that for i= 2 ,3 , . . . ,n there

exist Yi ^ S and YI e S satisfying (X i, Y i) , (Z i - l ,Y i) ,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20
(X I,Y I) e E ' where Zi is the non-terminal point of path V i.

Choose the path VI as COB C i= (P i,E i).

Step 4(Deleting a COB from the graph)

Let Pi={xi,X2,...,Xt} and Ei = {(Xi,Xi+l)[i=l,2,...,t-l}. Modify

V «• E'- {(X,Y) |X e p i} and P ' «• P i. I f P'= 0, the procedure

ends. Otherwise, i i+1 and go to step 2.

The reason fo r using the basic representation (as per step 1) in

the algorithm is to eliminate a l l extraneous edges from a given

computational graph. The edges removed by basic representation are

those that can never be part of a computable path. This can be proved

as follows:

Let there exist edge (A,B) and path (A ,...,C ,B) of length i 2 in graph

G. Suppose V = (X l,X 2 ,...,X n ,A ,B ,...) is a computable path. Since both

(A,B) and (C,B) e E, B uses results of both the computations at A and C.

Thus point C should also be on the path V before point B i . e . , C=Xi,

The to ta1 order of the points on the path implies that there

exists a path from C to A in G. But since (A ,...,C ,B) is also a path in

G, G has a cycle (A , . . . ,C , . . . ,A) and hence is not acyclic. Thus our

assumption that edge (A,B) is on a computable path is wrong.

Conditions a. through c. listed in step 2 of the algorithm ensure

that every path is computable. Condition d. allows one to choose the

longest possible chain of computable points as a computable path.

We now show that the step 3 of the algorithm always allows one to

choose a COB. Note that i f there is no path with terminal point as a

maximal point of G", then the graph G" is not empty and is acyclic

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

because of Theorem 2.1. Furthermore, the set S^0 because of Theorem

2.2. F in a lly , notice that any s e S has an indegree 2 in G' and

indegree 0 in G". This follows from the fact that s e S, being a

minimal point, has indegree 0 in G". I f s had indegree 0 in G', then a

path (s) would have been a computable path and s i G". F inally i f s

had indegree 1 in G' , then for some X on a computable path, V, (X,s)e

E ' and s would be on another computable path identical to V t i l l X and

containing s. Thus even in th is case s f G".

There are at least two computable paths le f t a fter eliminating some

computable paths which have no points X e V, s e S such that (X,s) £ E ' .

(The reason why there are a t least two and not just one computable paths

le f t is as follows: i f the point s-e S gets both of its inputs from the

same computable path, V, in G% i . e . , (X i,s), (X j,s) e E ', i > j , with

both X i, Xj e V, then there is a path of length _> 2 between Xj and s,

namely, the path (X j , . . . ,X i ,s) . Therefore, presence of the edge (X j,s)

in G" contradicts the fact that G' is a basic representation).

To ju s tify the weighing scheme outlined in step 3, suppose that the

last node of every COB is colored red. To minimize the number of COBs,

one should thus have as few red points as possible in the fin a l graph.

All maximal points of G must be red, since COBs computing these must end

there. For th is reason, i f one finds a path with its last point, a

maximum point, then one may safely choose i t as a COB since no other

choice of a COB may ever save the last point of this path from being

red.

A ll points X of the graph for which there exist some indegree one

points Y such that (X,Y) e E , are defin ite ly not red, since any

computable path containing X can always be extended to Y; and thus, X is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

never the last point of any COB. Thus the only points which may be

affected by choice of COBs are those X e P" for whom every Y with

(X,Y) e E ' has an indegree 2.

At any stage (any i value) in the algorithm, no point Y with

indegree 2 in G' of that stage can belong to any computable path because

of condition c. of step 2. Thus a point Y e P ' of indegree 2 with

(X,Y), (Z,Y) e E ' can occur only in following configurations:

i) X, Z e G".

i i) X f G" and X is non-terminal point of a computable path.

Z e G".

i i i) X, Z f G". Neither X nor Z are terminal points of th e ir

respective paths VI and V2.

iv) X, Z / G". X is a terminal point of path VI and Z is a

terminal point of path V2. (VI t V2, as has been shown

e a r lie r).

v) X, I f G". X is a terminal point of path V I, but Z is not a

terminal point of path V2.

We now determine the effect of choosing a particular path as COB at

a given stage on X and Z. In case i) , choosing a particular path as a

COB at this stage clearly has no effect on the color of X and Z.

To deal with the remaining cases, note that a computable path at

any stage, i f not chosen as a COB, s t i l l remains as a computational path

at the next stage. There are only two exceptions to th is . F irs tly ,

some in it ia l portion of the path and the chosen COB may be same. In

this case, those in it ia l points already computed by the chosen COB w ill

no longer be on the path. Secondly, le t X be the terminal point of the

computable path and (X,Y) f E ' for some indegree 2 point Y e G".

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

23

The chosen COB might convert Y to a point of indegree 1. In th is case,

the computable path w ill be appended at least by point Y.

From the disscussion above, the point X in case i i) and points X

and Z in case i i i) cannot be painted red regardless of choice of COB.

The point Z in case i i) is also obviously not affected by this choice.

Regarding case iv) , note that choice of a computational path other

than VI and V2 as a COB does not in any way affect paths VI and V2.

Choosing VI or V2 as COB has the same effect of painting exactly one of

the points X or Z red. Thus at the present stage or some time in

future, one of these two points w ill be painted red. In this case, one

can choose one of the paths as a COB since any other choice w ill not

save both the points from being red. The situation described in part

(b) of step 3 of the algorithm is a generalization of this case.

F ina lly , in case v), choosing a computational path other than VI or

V2 has no effect on the two paths as before. I f VI is chosen as a COB,

then X becomes a red point, however, choice of V2 as a COB reduces the

indegree of Y to one thus implying that X w ill now never be red. Note

that in both cases, point Z is not red, since i t is not a terminal point

of any COB. One should, in this case, choose V2 as the COB to save one

red point. The situation described in part (c) of step 3 of the

algorithm is a generalization of this case.

These arguments also allow one to find the bounds on the number of

1-dimensional COBs required to cover a given graph. Minimum number of

red points in a graph is equal to the number of maximal points and

maximum number of red points equal the maximal (certain ly red) points

plus indegree two (potentially red) points in the graph. Using the

normalized execution times assumed in Section 1.2, one may also get

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24

upper and lower bounds on the time complexity. For example, in the

graph of Fig. 2 .6 , there are only 2 maximal points and 5 points with

indegree 2. Thus, fo r this graph,

2 < Number of COBs 7.

Using the time complexity expression in Section 2 .3 , and the fact that

maximal points have outdegree 0 one gets the time complexity of this

graph as:

46 < Time Complexity ^ 66.

2.5 Example

The following is an example to find implementation of the graph G

in Fig. 2.6 on 1-register machine.

Step 1: Basic representation of G = (P , E) is G" = (P% E') where

P ' = P = {A ,B ,...,N } and V = E - {(A ,B),(K ,M)}. Set i= l .

Step 2: The computable paths are VI = (A,B,C,D), V2 = (A,B,C,J), and

V3=(A,E,F).

Step 3: Since VI has a maximal point, i t is chosen as the f i r s t COB

based on condition (a). C1=(P1,E1) where PI = (A,B,C,D) and

El = {(A ,B),(B ,C),(C ,D)}.

Step 4: Modified ? ' = {E ,F ,... ,N } and

E' = { (E ,F),(F ,G },(G ,H),(G ,K),(H ,I) ,(I,N),(J ,K),(K ,L),(L ,M)} .

i «- 2.

Step 2: The computable paths are V1=(E,F,G ,H,I), and V2=(J).

Step 3: In the present case, (J ,K), (I ,N) , (G,K) e E ' , I and J are

terminal points of VI and V2 respectively, K e S and N ^ S.

Hence, based on condition (c) of step 3, the second COB C2 is

chosen as V I, C2=(P2,E2) where P2 = {E,F,G,H,l} and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

25

E2 = {(E ,F),(F ,G),(G ,H),(H ,I)}.

Step 4: Modified P ' = { j ,K , . . . ,N } and E ' = {(J ,K),(K ,L),(L ,M),(M ,N)}.

i ♦ 3.

Step 2: The only computable path is V1=(J,K,L,M,N).

Step 3: Choosing the th ird COB C3 as V I, C3=(P3,E3) where P3= {J,K,L,M,N}

and E3 = {(J ,K),(K ,L),(L ,M),(M ,N)}.

The implementation of the computation of Fig. 2.6 in a one register

machine w ill need (from Section 2.3) only 3 Loads, 14 Mop(+,-) and 8

Stores requiring a to ta l of 50 units of time. On the other hand, i f

each point had been evaluated independently through a Load, Mop(+,-) and

Store, then one would have required 84 units of time.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3
COMPUTATIONALLY ORGANIZED BLOCK: R-DIMENSION

As has been shown In Chapter 2, the number of edges between COBs

basically determines the efficiency of implementation of the algorithm.

The implementation on an r-reg is ter machine thus should be based on

cleverly formed r-dimensional COBs with as few interconnections as

possible. This would in general be a very d if f ic u lt task, even for

algorithms of moderate complexity. In this thesis we adopt an approach

which allows us to design an implementation for an r register machine

from that of an r-1 register machine.

In the f i r s t section of this chapter, the time complexity of the

implementation of a graph using r dimensional COBs is derived. In

Section 3.2 , an algorithm is presented to merge (r-l)-dimensional COBs

to form r-dimensional COB cover for the graph. Using this algorithm

repeatedly, any dimensional COB cover may be constructed. In order to

illu s tra te the COB merging process, 4-point Fast Fourier transform

algorithm is presented as an example in Section 3.3.

3.1 Complexity of r Register Implementation

In this section, time complexity of an arb itrary computational

graph covered by r-dimensional COBs is derived. The derivation is

constrained to graphs with points, with maximum outdegree 3 points. This

lim itation does not impose a significant handicap for a re a lis tic

computational graph.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

28

Suppose the given computational graph is partitioned in r -

dimensional COBs. The following notation is used in the time complexity

derivation.

En : number of edges outside of COBs, which s ta rt from the points with

outdegree (not including the outdegree due to the -edges within

COBs) of n.

En' : number of edges outside of COBs, which end at the points with

indegree (not including the indegree due to the edges within COBs)

of n.

Pn : number of points with outdegree n in the original graph.

Pn' : number of points with indegree n in the original graph.

Following operation counts based on an implementation of the graph

in terms the r-dimensional COBs are easy to obtain.

of Store : El + E2/2 + E3/3
of Loads : P0'+ E272
of Mop(*): P0'+ ?} '+ E1'+ E2'/2
of Copies: P2 + P3 - El - E2/2 - E3/3
of Rop(*): P 2 '- EK - E272

I f a ll arithmetic operations are assumed to be (+ ,-) and the normalized

times for various operations given in Section 1.2 are used,

Total Time = [4P0'+ 2PK+ P2 + P2'+P3]
+ [El + E2/2 + E3/3 + E l ' + 1.5 E2'] .

The quantities in the f i r s t bracket are constants, since they are

related to the original graph. However, the quantities in the second

bracket are dependent upon the way the graph is partitioned in r -

dimensional COBs and are therefore related to the particular choice of a

r-dimensional COB cover. Thus, reduction of time complexity of an

implementation in a machine with r registers implies proper selection of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

29
a r-dimensional COB cover for the graph which minimizes the number of

edges outside the COBs.

3.2 r-Dimensional COB Algorithm

Following algorithm may be used to obtain a r-dimensional COB cover

for a graph from a (r-l)-dimensional COB cover.

Step 1(In it ia liz a tio n)

Let C* be the set of (i—1)-dimensional COBs. Assign an integer

function ni to points in each COB Ci e C ' having the property that

ni(x) < n i(y) ; x ,y e Ci i f f computation of x is done before the

computation of y . Let E" denote the set of edges in the original

graph G, not included in any of the COBs in C '. Set m = 1.

Step 2(Finding a ll computable paths)

A computable path is a sequence of points of C ' along with a subset

E ' <= E". A computable path is generated using the following four

transformations:

I I : Let Ci be the last COB of the current path. COB Cj may be

appended to the path i f f the only inputs to Cj are from COBs on

the path, and i f Ck preceeds Ci on the path, fo r some x £ Ck,

y e Ci, (x ,y)e E ', then there should exist (z,w)e E" such that

z e Ci and w e Cj and ni(y) _< n i(z) . I f Cj is added to the

path, set E ' = E ' U (z,w).

T2: COB Ck is inserted between two consecutive COBs Ci and Cj on

the path i f f the only inputs to Ck are from the COBs on the

path upto Ci, and i f for some x e Ci, y e Cj, (x,y) e E ', then

there exists (x ,z) e E", z e Ck. I f Ck is added to the path,

set E' = E' U (x ,z).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30

T3: COB Ck is inserted between two consecutive COBs Ci and Cj on

the path i f f the only inputs to Ck are from the COBs on the

path upto Ci, there is no edge on the path going from Ci to Cj,

and for some x e c i, y e Ck, (x,y) e E", such that the function

ni has its maximum value at x and the function nk has its

minimum value at y. I f Ck is added to the path, set E '

= E ' U (x ,y).

T4: COB Ck is inserted between two consecutive COBs Ci and Cj on

the path i f f the only inputs to Ck are from the COBs on the

path upto Ci, for some x e Ci, y e Cj, (x,y) e E ' , function ni

has its maximum value at x, and for some z e Ci, w e Ck,

(z,w)c E", such that the function nk has its minimum value at

w. I f Ck is added to the path, set E' - E ' U (x ,y).

These transformations are illustrated in Figure 3.1.

A computable path is generated as follows:

a. Set E'= 0 and choose a COB with no input edges as the f ir s t

point of the path.

b. Let (C l,C 2,. . . ,Ct) be the current path. Insert a COB a fter Ci

in the path by applying rules T!,T2,T3 and T4 above i f f no COB

can be inserted after C l,C 2 ,.. .C i- l.

c. The path is completed when rules T1,T2,T3 and T4 can no more be

applied to add COBs to that path.

Step 3(Choosing an r-dimensional COB)

(a) For each computable path, find the number of COBs which can be

attached to a path i f input edges of attached COBs coming from

COBs not on the path are disregarded. I f there exists a path

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

31

T it ..CkCI - . a c i c j

FP: The f irs t point of COB
IP: The last point of COB

CJ

Ck

Fig. 3.1. The four basic transformations used
to form computable paths.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

32

with 0 attachable COBs, then choose the path as the m-th COB of

dimension r and go to step 4.

(b) Find i f possible, computable paths V1,V2,..,Vn such that more

COBs can be attached to path Vi i f input edges of attached COBs

coming from COBs on path Vi-1 are disregarded for i = 2 , . . ,n - l

and more COBs may be attached to path VI i f the input edges of

attached COBs coming from COBs on the path Vn are disregarded.

Choose path VI as the m-th COB of dimension r .

(c) Find computable paths V1,V2,..,Vn such that more COBs can be

attached to path Vi i f input edges of attached COBs coming from

COBs on path Vi-1 are disregarded for i = 2 , . . , n - l . Choose

path VI as the m-th COB of dimension r and go to step 4.

Step 4(Deleting a r-dimensional COB)

Delete from set E" edges originating from the COBs on the chosen

path. I f E"= 0, then the procedure terminates, otherwise, le t m

= m + 1 and go to step 2.

The assignment of the integer function n (.) in step 1 ensures the

computational ordering within a COB.

The four transformations used to obtain a computable path in step 2

of the algorithm basically gurantee the computability of each path and

also ensure that each path absorbs as many edges in E" as possible. I t

may also be noted that the four transformations are mutually exclusive.

T1 is the only transformation which adds a new COB at the end of the

current path. Only in T3, new COB is inserted between two unconnected

COBs on the current path which are not connected. Transformations T2

and T4 would be identical only in the case when x is the last point of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

33
Ci, y e Cj, z is the f i r s t point of Ck, and (x,y) e E ', (x ,z) e E". But

in th is case, since the only inputs to Ck are from the COBs on the

current path t i l l Ci, COBs Ci and Ck would not be separate COBs of

(r-l)-dim ension.

Step 3 of th is algorithm may be reasoned out in exactly the same

manner as step 3 of the algorithm for 1-dimensional COBs.

3.2 Example

In th is section, implementations on various machines of the 4 point

Fast Fourier Transform (FFT) graph shown in Fig. 3.2 are sketched. The

1-dimensional COB cover of th is graph shown in Fig. 3.3 is obtained by

the algorithm of Chapter 1 and used as an input for the algorithm of the

e a rlie r section. The following steps describe the formation of 2-

dimensional COBs derived through the application of th is algorithm.

Step 1: Graph G' = (C ',E ') is constructed as shown in Fig. 3.4.

Integer function ni is assigned to each point for every COB. E'

is set of edges remaining outside of COBs in Fig. 3 .4.

Steps 2 and 3 are shown in the following table for brevity.

Step 2 Step 3
Computable Path * Number of

Path COB Sequence set E' Attachable COBs

VI C1C2 (1 ,1 ;2 ,2) 3
V2 C3 — 1
V3 C5C6C9 (5 ,1 ;6 ,2),(6 ,2 ;9 ,1) 2
V4 CIO — 1

* Notation (a,b;c,d) stands for an edge from the point b of COB a
to the point d of COB c.

There is no path with 0 attachable COBs. But path V2 may be extended by

COB C4 i f inputs to C4 from path VI ((2 ,4 ;4 ,5)) is disregarded.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

34

Fig. 3.2. Computational graph of 4-point FFT.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

35

Fig- 3 .3 . 1-dimensional COB cover of the 4-point FFT graph.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

36

C12

C1I

CIS

C20

CU

C10Q-

c n

Fig. 3.4. Equivalent 1-register COB cover of the 4-point FFT graph.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

37

Sim ilarly path V4 may be extended by COB C ll i f inputs to C ll from path

V3 ((9 ,2;11,5)) are disregarded. Thus from condition (b) of step 3,

one may choose either VI or V3 as the f i r s t COB. Let V3 be the f i r s t

2-dimensional COB.

Step 4: A ll edges originating from C5, C6, and C9 are deleted from E".

Steps 2 and 3:

Step 2 Step 3
Computable Path Number of

Path COB Sequence set E' Attachable COBs

VI C3 — 1
V2 C1C2 (1 1*2 2) 3
V3 C10C11C14C15 (1 0 ,1;11,2),(11^3;14 ,1),(14,1;15 ,2) 3

There is no path with 0 attachable COBs. But path V2 may be extended by

COB C13 i f the input to C13 from the path V3 ((11,5;13,2)) is

disregarded. Thus from condition (b) of step 3, V3 is chosen as the

second 2-dimensional COB.

Step 4: Edges originating from CIO, C ll, C14 and C15 are deleted from

E".

Steps 2 and 3:

Step 2 Step 3
Computable Path Number of

Path COB Sequence set E ' Attachable COBs

VI C3 — 1
V2 C1C2C13C20 (1 ,1 ;2 ,2) ,(2 ,2 ;1 3 ,1),(1 3 ,1 ;2 0 ,1) 0

V2 is chosen as the th ird 2-dimensional COB from condition (a) of step

3.

Step 4: Edges originating from Cl, C2, C13 and C20 are deleted from E".

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

38

Steps 2 and 3:

Step 2 Step 3
Computable Path Number of

Path COB Sequence set E' Attachable COBs

VI C3C4C12C17 (3 ,1;4 ,2),(4 ,5 ;1 2 ,2),(4 ,5 ;1 7 ,1) 1
V2 C3C4C7C8C18 (3 ,1 ;4 ,2),(4 ,3 ;7 ,1),(7 ,1 ;8 ,2),(8 ,2 ;1 8 ,1) 0
V3 C3C4C16C19 (3 ,1 ;4 ,2),(4 ,2 ;1 6 ,1),(1 6 ,1 ;1 9 ,1) 0

V2 is chosen as the fourth 2-dimensional COB from condition (a) of step

3.

Step 4: Edges originating from C3, C4, C7, C8 and C18 are deleted from

E".

Steps 2 and 3:

Step 2 Step 3
Computable Path Number of

Path COB Sequence set E' Attachable COBs

VI C12C17 (12,1;17,1) 0
V2 C16C19 (16,1;19,1) 0

VI is chosen as the f i f th 2-dimensional COB from condition (a) of step

3.

Step 4: Edges originating from C12 and C17 are deleted from E".

Steps 2 and 3:

Step 2 Step 3
Computable Path Number of

Path COB Sequence set E' Attachable COBs

VI C16C19 (16,1;19,1) 0

VI is chosen as the sixth 2-dimensional COB.

Step 4: After edges originating from C16 and C19 are deleted from E",

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

39
E" = 0. Therefore procedure terminates.

The resultant 2-dimensional COB cover is shown in Fig. 3 .5 . In order to

obtain 3-dimensional COB cover, the r-reg is ter algorithm is applied to

Fig. 3 .5 . The result is 3 3-dimensional COBs, as shown in Fig. 3.6.

Applying the r-reg is ter algorithm repeatedly, 4 to 9-register COBs are

found, as shown in Fig. 3.7.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40

Fig. 3.5. 2-dimensional COB cover of the 4-point FFT graph.

'20

Fig. 3.6. 3-dimensional COB cover of the 4-point FFT graph.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4-dimensional COB cover

5-dimensional 6-dinensional

7-dii.iensional 8-dimensional

O "

9-dimensional

Fig. 3 .7 . 4- through 9-dimensional COB
covers of the 4-point FFT graph.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4

APPLICATIONS

The intent of th is chapter is to illu s tra te the concept of a

prim itive COB and its integration with the principles developed in

e a rlie r chapters. A prim itive COB is defined and illus tra ted by an

example in Section 4 .1 . In Sections 4 .2 , various prim itive COBs

suitable fo r Hadamard transform (HT), and th e ir codes using the

algorithms developed in Chapters 2 and 3 are obtained. In Section 4.3 ,

HT implementations using these prim itive COBs are investigated.

Sections 4.4 and 4.5 repeat this exercise for fast Fourier transform

(FFT).

4.1 Prim itive COB

Many signal processing algorithms have graphs which may be

partioned into a set of identical subgraphs. This property greatly

simplifies the software implementation of signal processing algorithms.

As Morris illu s tra tes in [19], automatic generation of d ig ita l signal

processing software is possible by making use of the regular structure

of the algorithm. In such software generation, a computational kernel

is identified and is used repeatedly to compute the complete algorithm.

This computational kernel is usually the smallest repeatable subgraph

possible.

A prim itive COB is a computational kernel, but not necessarily the

smallest repeatable subgraph. A given graph may be covered using many

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

43
different prim itive COBs. A computational graph may also be implemented

using d ifferent prim itive COBs simultaneously. The following example

illus ta tes this idea through the implementation of a binary

computational graph of 63 points (shown in Fig. 4.1) using a set of

prim itive COBs.

The procedure begins by finding a set of prim itive COBs as shown

in Fig. 4 .2 . The complete graph can be implemented in two different

ways. One way is to use the prim itive COB of 3 points and another way

is to use the prim itive COB of 7 points. The results of these two

different implementations are shown in Fig. 4 .3 . In addition to

different implementations, each prim itive COB can be implemented on

machines with d ifferent numbers of registers to compare the execution

time for the complete graph. These implementations and the ir

complexities are shown in Fig. 4 .4 and Table 4.1 .

Table 4.1 . Dependence of the complexities of two different
implementations upon the number of registers in the machine.

Implementation using 3 point prim itive COB

of registers Time/COB Eta # of COBs Total Time for the graph

1 16 5.33 21 336
2 13 4.33 21 273
3 13 4.33 21 273

Implementation using 7 point prim itive COB

1 36 5.14 9 324
2 30 4.29 9 270
3 27 3.86 9 243

An implementation of the complete graph may also be devised using

the algorithm developed e a rlie r . The time complexity of this

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fig. 4.1. A computational graph with 63 points.

<
C O I O F 3 P O I N T S CO B OF 7 P O I N T S

Fig. 4 .2 . Prim itive COBs fo r implementation of
the graph in Fig. 4 .1 .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

45

1 t C « I S T C f t 2 R E S I S T S !
3 l E t l S T E I

1 R E S I S T S ! 2 R E 6 I S T E R 3 R E 6 1 S T E R

Fig. 4 .3 . Various implementations of 3- and 7-point prim itive COBs.

1

U S IN G 3 P O I N T P R I M I T I V E C O B S U S IN G 7 P O I N T P R I M I T I V E C O B S

Fig. 4 .4 . Cover of complete graph using 3- and 7-point prim itive COBs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

46

implementation w ill generally be smaller than those with prim itive COBs.

This is because the usage of the prim itive COBs a r t i f ic ia l ly severs some

linKs in the graph without caring for its global implications. However,

the increase in time is marginal as Table 4.2 shows.

Table 4 .2 . Comparison of implementations with and without prim itive COBs.

of registers Time fo r implementation
without prim itive COBs

% increase in time using COB of
3 points 7 points

1 316 6.33 2.53
2 264 3.41 2.27
3 241 13.28 0.83

One may note that increasing the number of registers generally reduces

the time gap between the implementations with and without prim itive

COBs. The only exception to th is occurs when the prim itive COB is too

small to fu l ly u t i liz e a l l the available registers.

In actual software implementation, time complexities due to

decision-making and arithmetic operations for loop control are assumed

to be eliminated by the use of in-line-code. Therefore, whether

prim itive COB approach is used or not, the code sizes are approximately

the same. However, the design of a large non-structural errorless

software fo r an algorithm may be a time consuming task without prim itive

COBs. With prim itive COBs, the software can be generated automatically

and with ease since the portion of the software related to the prim itive

COB can be used repeatedly to form a complete code.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

47

4.2 Hadamard Transform(HT)

In this section, a description of e ffic ie n t l - , 2 - , and 3-register

implementations for prim itive COBs of 2X2, 4X3, 8X4, and 16X5 points

useful for computation of HT is presented. These prim itive COBs are
12

then used to compute a 2 -point HT.

4.2.1 1-Register Implementation of Prim itive COBs

Prim itive COBs of 2X2, 4X3, 8X4, and 16X5 points which would be

used here for implementing the Hadamard transform are shown in Fig. 4.5.

These prim itive COBs were chosen fo r th e ir superior performance (with

reference to th e ir time complexity) from many different primitive COBs

that might be useful fo r implementing a Hadamard transform. Figure 4.5

also shows a 1-dimensional COB cover obtained through algorithm of

Chapter 2 and lis ts the associated codes for a machine with only one

accumulator. Using the formula derived in Chapter 2, one obtains the
n

to ta l number of operations in the case of a 2 length HT as:

Total # of operation= # of COBs + # of points + # of points with

outdegree > 2 + # of COBs with terminal

point outdegree > 2
n-1 n n n

= (2+n)2 + (n+l)2 + n2 + 2
n-1

=(5n+6)2.

Since execution time for Tload, Tmop(+,-), and Tstore are assumed to be

2 units each, to ta l execution time is

n-1 n
Total Time=(5n+6)2 x 2 = (5n+6)2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

computation • Rl

code

2X2 prim itive COB

Rn: n-th register
In: n-th input data from memory
On: n-th output data to memory
Tn: n-th temporary scratch pad memory location

computation

4X3 prim itive COB

R1 13
R1 Rl ♦ 1 7
Tf Rl
R1 11
R1 Rl ♦ 15
T1 Rl
R1 Rl ♦ Tf
T2 Rl
R1 T1
R1 Rl • Tf
TV Rl
R1 12
Rl Rl ♦ 16
T1 Rl
R1 I f
R1 Rl ♦ 14
n Rl
R1 Rl ♦ T1
T* Rl
Rl Rl ♦ T2
Of Rl
Rl T4
R1 Rl - T2
01 Rl
R1 T3
R1 Rl - T1
T2 Rl
R1 Rl ♦ Tf
02 Rl
R1 T1
Rl Rl - Tf
03 Rl

code

Fig. 4.5a. 1-reg ister implementation of HT.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

49

(Y “
■— 7*)

/r~Y ■

T J v

VrVAl " ' t ■

computation

Rl 17 01 Rl
Rl Rl ♦ IIS Rl T4
n Rl Rl Rl - T2
Rl 13 TZ Rl
Rl Rl * 111 Rl T9
T1 Rl Rl Rl - T7
Rl Rl ♦ T l T4 Rl
TZ Rl Rl Rl ♦ TZ
Rl Tl 02 Rl
Rl Rl - T l Rl T4
Tf Rl Rl Rl - TZ
Rl IS 03 Rl
Rl Rl * 113 Rl T8
T1 Rl Rl Rl - T6
Rl 11 TZ Rl
Rl Rl * 19 Rl Rl ♦ Tl
T3 Rl T4 Rl
Rl Rl ♦ Tl Rl Rl ♦ T3
T« Rl 04 Rl
Rl Rl ♦ T2 Rl T4
T5 Rl Rl Rl - T3
Rl T3 OS Rl
Rl Rl - Tl Rl TZ
T1 Rl Rl Rl - Tl
Rl Rl ♦ T l Tl Rl
T3 Rl Rl Rl ♦ T l
Rl Tl 06 Rl
Rl Rl - T l Rl Tl
T* Rl Rl Rl - T |
Rl 16 07 Rl
Rl Rl ♦ 114
T1 Rl
Rl IZ
Rl Rl * I I I
T6 Rl
Rl Rl ♦ Tl
T7 Rl
Rl T6
Rl Rl - Tl
T1 Rl
Rl 14
Rl Rl ♦ 112
T6 Rl
Rl I I
Rl Rl * 18
T8 Rl
Rl Rl ♦ T6
T9 Rl
Rl Rl ♦ T7
T il Rl
Rl Rl ♦ T5
Of Rl
Rl T il
Rl Rl - T5

code

Fig. 4.5b. 1-register implementation of HT(continued).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50

16X5 prim itive COB computation

Fig. 4.5c. 1-register implementation of HT (continued).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

51

Rl - 115
Rl Rl ♦ 131
ra - Rl
Rl - 17
Rl - Rl ♦ 123
Tl - Rl
Rl - Rl ♦ T#
TZ • Rl
Rl - Tl
Rl - Rl ♦ Tl
Tl - Rl '
Rl - I l l
Rl • Rl ♦ 127
Tl • Rl
Rl - 13
Rl • Rl ♦ 119
T3 • Rl
Rl - Rl ♦ Tl
T4 • Rl
Rl - Rl ♦ TZ
T5 • Rl
Rl - T4
Rl * Rl - T2
TZ * Rl
Rl - T3
Rl - Rl - Tl
Tl • Rl
Rl - Rl ♦ T |
T3 - Rl
Rl - Tl
Rl - Rl - Tl
Tl - Rl
Rl . 113
Rl - Rl ♦ 129
Tl - Rl
Rl . 15
Rl • Rl ♦ 121
T4 . Rl
Rl - Rl ♦ Tl
T6 • Rl
Rl . 74
Rl - Rl - Tl
Tl - Rl
Rl - 19
Rl - Rl * I2S

- Rl
Rl - : i
Rl - Rl » 117
T7 ♦ Rl
Rl - Rl * T4
T8 - Rl
Rl - Rl ♦ T6
T9 - Rl
Rl - RW 5

T il Rl
Rl T9
Rl Rl - T5
T5 Rl
Rl Tl
Rl Rl - T6
Tl Rl
Rl Rl ♦ T2
Tl Rl
Rl T6
Rl Rl - T2
TZ Rl
Rl T7
Rl Rl - T4
T4 Rl
Rl Rl ♦ Tl
T6 Rl
Rl Rl ♦ T3
T7 Rl
Rl T6
Rl Rl - T3
T3 Rl
Rl T4
Rl Rl - Tl
Tl Rl
Rl Rl ♦ T l
T4 Rl
Rl Tl
Rl Rl T|
Tl Rl
Rl 114
Rl Rl ♦ 134
Tl Rl
Rl 16
Rl Rl ♦ 122
T6 Rl
Rl Rl * Tl
T9 Rl
Rl T6
Rl Rl - Tl
ri Rl
Rl I I I
Rl Rl » 126
T6 Rl
Rl 12
Rl Rl * 118
Til Rl
Rl Rl ♦ T6
TI2 Rl
Rl Rl * T9
T13 Rl
Rl T12
Rl Rl - T9
T9 Rl

Rl Til
Rt Rl - T6
T6 Rl
Rl Rt * Tl
Til Rl
Rl T6
Rl Rl - Tl
Tl Rl
Rl 112
Rl Rl ♦ 121
T6 Rl
Rl 14
Rl Rl * 121
T12 Rl
Rl Rl ♦ T6
T14 Rl
Rl T12
Rl Rl - T6
T6 Rl
Rl I I
Rl Rl ♦ 124
T12 Rl
Rl I I
Rl Rl ♦ 116
T15 Rl
Rl Rl ♦ T12
T16 Rl
Rl Rl ♦ T14
T I7 Rl
Rl Rl ♦ T13
T18 Rl
Rl Rl ♦ T i l
01 Rl
Rl T i l
Rl Rl - T i l
01 Rl
Rl T17
Rl Rl - T13
Til Rl
Rl Rl . T5
02 Rl
Rl Til
Rl Rl - T5
03 Rl
Rl T16
Rl Rl - T14
T5 Rl
Rl Rl ♦ T9
Til Rl
Rl Rl ♦ T8
04 Rl
Rl T i l
Rl Rl - T8
05 Rl

Rl T5
Rl Rl - T9
15 Rt
>1 Rl ♦ T2
01 Rl
11 -15
Rl Rl - T2
07 Rl
11 T15
Rl T12
12 Rl
Rl Rl ♦ T6
IS Rl
Rl Rl ♦ T il
11 Rl
Rl r i ♦ n
01 Rl
Rl T l
Rl r i - n
09 Rl
Rl T5
Rl Rl - T il
15 Rl
Rl Rl ♦ T3
Oil Rl
Rl T5
Rl Rl - T3
011 Rl
Rl T2
Rl Rl - T6
12 Rl
Rl Rl ♦ Tl
13 Rl
Rl Rl ♦ T4
012 Rl
Rl T3
Rl Rl ♦ T4
013 Rl
Rl T2
Rl Rl ♦ Tl
Tl Rl
Rl Rl ♦ TO
014 Rl
Rl Tl
Rl Rl ♦ Tl
015 Rl

16X5 prim itive COB code

Fig. 4.5d. 1-register implementation of HT (continued).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

52
We denote the time complexity of a COB implementation per point by

Eta. Eta is a measure of the efficiency of the implementation. A

smaller Eta indicates a better implementation. In a 1-register
n

implementation of a prim itive COB of 2 X(n+1) points, Eta = 5 + l / (n + l) .

4.2.2 2-Register Implementation of Primitive COBs

Primitive COBs shown ea rlie r may also be covered using 2-

dimensional COBs and implemented on a machine using 2 accumulators

e ffic ie n tly . The results, obtained from the algorithm of Chapter 3, are

shown in Fig. 4 .6 . To compute the execution time of these

implementations, an inspection of th e ir structure is in order. The odd

and even indexed points of the f i r s t n-1 stages of these highly regular

implementations are mere duplicates of one lower size implementation.

The last stage of the implementation is made up of three d ifferent types

of bu tterflies shown in Fig. 4.7. These butterflies occur in a regular

cycle of T y p e s -1 ,2 ,1 ,3 ,1 ,2 ,1 ,3 ,.... A Type-1 butterfly computation

involves only one Load, but two Mop(+) and Stores each. Its complexity

(complexity of computing the two end-points) is thus 10 time units.

Type-2 bu tterfly involves a Rop(+), a Mop(+) and two Stores. I t also

saves the storage of one of the source points. Its effective complexity

is thus 5 time units. F ina lly , the Type-3 bu tterfly involves two Mop(+)

and Stores but i t converts the Store of source point into a Copy thus

having an effective complexity of 7 time units.
n

From the above discussion, the time complexity of 2 X (n+1) point

primitive COB, C(n), is given by:

n-2 n-3 n-3
C(n) = 2C(n-1) + 10x2 +5x2 +7x2 ; n > 2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

53

Rl 11
Rl Rl ♦ 13
R2 10
R2 R2 ♦ 12
T# R2
R2 R2 ♦ Rl
Of R2
Rl Rl • TO
01 Rl

computation

2 X 2 prim itive COB

4 // /
/ /

/ /

N.
\

o 'o

computation

Rl 13
Rl Rl ♦ 17
RZ 11
RZ RZ ♦ IS
TO RZ
RZ RZ ♦ Rl
Tl RZ
Rl Rl - TO
Tl Rl
Rl 1Z
Rl Rl ♦ 16
RZ 10
RZ RZ ♦ 14
TZ RZ
RZ RZ *R1
Rl Rl - TZ
TZ RZ
R2 RZ * T l
00 RZ
RZ TZ
RZ RZ - T!
01 RZ
RZ Rl
Rl Rl * TO
OZ Rl
RZ RZ - TO
03 RZ

4 X 3 prim itive COB

code

Fig. 4.6a. 2-register implementation of HT.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

54

O— ■— r -Q -
/ /

/ // >
/ /

O" H ' / ■ p
1 1 * '' '• '

» ? 7 - / ,°

t i t •
; / '/ • t \

-\ \ °
\

•' » o \ W —
\ ■

coiiiputation

>1 17
Rt Rl » IIS
RZ 13
RZ , RZ ♦ 111
T» RZ
RZ RZ ♦ Rl
Rl Rl ♦ Tf
Tl RZ
T* Rl
Rl IS
Rl Rl » 113
RZ 11
RZ RZ ♦ 19
TZ RZ
RZ RZ ♦ Rl
Rl Rl - TZ
TZ RZ
RZ RZ ♦ Tl
T3 RZ
RZ Rl
Rl Rl * T l
RZ RZ - Tf
TR Rl
T* RZ
Rl 16
Rl Rl * 114
RZ IZ
RZ RZ » I l f
TS RZ
RZ RZ ♦ Rl
Rl Rl - TS
TS Rl
TV RZ
Rl 14
Rl Rl » 112
RZ I f
RZ RZ ♦ 18
n RZ
RZ RZ ♦ Rl
Rl Rl - n
T7 RZ
RZ R2 ♦ T6
T8 RZ
RZ R2 » T3
01 R2
RZ Rl
Rl Rl ♦ TS
RZ RZ - TS
T5 Rl
Rl Rl * T8
0* Rl
Rl RZ
RZ RZ ♦ T4
OS RZ
Rl Rl - T4
07 Rl
Rl T8
Rl Rl - T3
01 Rl
Rl T7
Rl Rl - T6
RZ TZ
RZ RZ * Tl
Tl Rl
Rl Rl » RZ
OZ Rl
RZ RZ - Tl
03 RZ
Rl T5
Rl Rl - T8
05 Rl

code

8X4 prim itive COB

Fig. 4.6b. 2-register implementation of HT (continued).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

/ —\ " v O - -

/ ' * \ \ \J i l l . • V X
\ V \ \

O / / / - O -^ \ •V̂ ’D̂ » O - O

o / / - - o ' \ ' Ss'‘- W N*’* O 0

<&— . \ \ -
/

/o— \

16X5 prim itive COB computation

Fig. 4 .6 c . 2 -r e g is te r implementation o f HT (continued).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

56

Rl IIS
Rl Rl ♦ 131
RZ 17
RZ RZ ♦ IZ3
TO RZ
RZ RZ ♦ Rl
Rl Rl - TO
11 RZ
Tl Rl
Rl 111
Rl Rl ♦ 127
RZ 13
RZ RZ ♦ 119
TZ RZ
RZ RZ * Rl
Rl Rl - TZ
TZ RZ
RZ RZ ♦ T*
11 RZ
RZ Rl
Rl Rl ♦ Tl
RZ RZ - Tl
Tl Rl
T3 RZ
Rl 113
Rl Rl ♦ 129
RZ IS
RZ RZ ♦ 121
T4 RZ
RZ RZ ♦ Rl
Rl Rl • T*
T4 KZ
T5 Rl
Rl 19
Rl Rl * IZS
RZ 11
RZ RZ ♦ 117
T6 RZ
RZ RZ ♦ Rl
Rl Rl - T6
T6 RZ
RZ RZ ♦ T4
T7 RZ
RZ RZ ♦ T8
T9 RZ
RZ Rl
Rl Rl ♦ TS
RZ RZ - TS
TS Rl
Rl Rl ♦ Tl
T il Rl
Rl RZ
RZ RZ ♦ T3

Rt Rl - T3
T3 » RZ
T1Z * Rl
Rl * 114
Rl ♦ Rl ♦ 130
RZ • IS
R2 * RZ ♦ 122
T13 RZ
RZ . RZ ♦ Rl
Rl * Rl - T13
T13 RZ
T14 . Rl
RI 110
Rl « Rl ♦ 124
RZ ♦ 12
RZ • R2 ♦ 110
T1S • RZ
RZ • R2 + Rl
Rl » Rl - T15
T15 • RZ
RZ * RZ ♦ T13
TIC • RZ
RZ • Rl
RZ • RZ ♦ T14
Rl Rl - T14
T14 ♦ RZ
T17 • Rl
Rl • I1Z
Rl • Rl ♦ IZS
RZ 14
RZ RZ ♦ 120
T18 ♦ RZ
RZ - RZ ♦ Rl
Rl * Rl - T18
T18 * RZ
T19 • Rl
Rl - 18
Rl - Rt * 124
RZ - 10
RZ * RZ ♦ 116
T20 - RZ
R2 * RZ * Rl
Rl * Rl - TZO
TZO * RZ
RZ - RZ * T18
T21 • RZ
RZ * RZ * T8
T22 ■ RZ
R2 * RZ ♦ T9
00 - RZ
R2 • Rl
R2 • RZ ♦ T19
Rl - Rl - T19
T19 - RZ

RZ * R2 ♦ Tl
TZ3 RZ
RZ • RZ * T il
00 • R2
R2 - Rl
Rl * Rl ♦ T17
R2 ♦ RZ • T17
T17 » Rl
Rl * Rl «• T3
012 • Rl
Rl * RZ
RZ • RZ ♦ T12
Rl ♦ Rl - T12
014 • RZ
01S • Rl
Rl • TZ1
Rl * R1-T16
RZ - rt
RZ • RZ - T8
T7 * Rl
Rl • Rl * RZ
R2 * RZ • T7
02 ♦ Rl
03 * R2
Rl • TZ
Rl • Rl - TO
RZ * TS
RZ • R2 - T4
TZ * RZ
RZ * RZ » Rl
Rl * Rl - TZ
TZ * RZ
T4 * Rl
Rl * T15
Rl * Rl - T13
R2 * TZO
R2 * R2 - T18
T6 * RZ
RZ * RZ * Rl
Rl Rl - T6
T6 * RZ
RZ • R2 ♦ TZ
04 * RZ
RZ * Rl
Rl * Rl * T4
RZ * RZ - T4
06 • Rl
07 * RZ
Rl • TS
Rl * Rl - Tl
RZ * T19
RZ * R2 - T14
T l * R2
RZ - RZ ♦ Rl

Rl * Rl - Tl
010 - R2
OH - Rl
Rl - T22
Rl - Rl - T9
01 - Rl
Rl « TS
Rl * Rl - TZ
OS • Rl
Rl * T23
Rl * Rl • T il
OS * Rl
Rl - T17
Rl * Rl - T3
013 - Rl

16X5 prim itive COB code

Fig. 4.6d. 2-register implementation of HT (continued).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

57

■ < q > Q H,S

N.SO O l .N .S

TYPE 1

\ .

X \
N.SO ^ O N .S

TYPE 3

Fig. 4 .7 . The three types of bu tterfly implementations prevalent
in the 2-register implementation of HT.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

58
The solution of this difference equation yields the following closed

form expression for the time complexity of the two register

implementation.

n
C(n) * (4n + 4.75)2 ; n > 2.

Also in th is case, Eta = 4 + 0 .75 /(n + l).

4.2.3 3-Register Implementation of Prim itive COBs

The 3-dimensional COB cover of the prim itive COBs under

consideration and the associated implementations on a machine with 3

accumulators are shown in Fig. 4 .8 .

4.2.4 0-Register and In fin ite-R egister Implementations

I f an implementation computes each graph point independently,

without any regard for the graph structure, we ca ll i t a O-register

implementation here. Each HT computational point is calculated by f i r s t

loading an operand, then adding to or subtracting from i t an operand

located in memory, and storing the result back into the memory, taking a

total of 6 units of time. Each computational point, in this case, is a

COB. Since a O-register implementation is constructed without any

e ffo rt to minimize memory related operation, its execution time is the

worst possible.

Since every computational point takes 6 units of time, to ta l time

for a computational graph may be obtained by merely multiplying the

number of computational points in the graph by 6.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

59

■yo

X

computation

Rl i i
Rl Rl ♦ 13
RZ I I
RZ RZ * IZ
R3 RZ
RZ RZ ♦ Rl
Rl Rl • R3
Of RZ
01 Rl

code

2X2 p rin itiv e COB

\ / \
^ ¥ : p X °
V V / \ / \

o— / V " ^ -----------

/ \ x -
t ------------- \ N

computation

Rl 13
Rl R l ♦ 17
RZ 11
RZ RZ ♦ IS
R3 RZ
RZ RZ * R l
a i Rl ♦ R3
T l RZ
T l Rl
Rl IZ
Rl Rl * 16
RZ I I
RZ RZ + 14
R3 RZ
RZ Rl ♦ Rl
Rl Rl - R3
R3 RZ
RZ RZ ♦ TO
R3 R3 - TO
00 RZ
01 R3
R3 Rl
Rl Rl ♦ Tl
R3 Rl * Tl
02 Rl
03 R3

code
4X3 prim itive COB

Fig. 4.8a. 3-register implementation of HT.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

60

“ N T *
& -------- ->>

x
O----------- -̂ >3

\
! h \ \ / \y i '4 -W —* —p

' ' A \ \ / \ /
* / \ • v V

/ / \ \ A A
H— r6, A ̂ --- 0< • ' \
/ \ / \ ^ 3 ■ 0 --------------------------------- « >0

computation

Rl
Rl
Rt
R2
R3
RZ
Rl
TO
RZ
RZ
R3
R3
Tl
R3
RZ
Tl
R3
RZ
Rt
Tl
TZ
Rl
Rl
RZ
RZ
R3
RZ
Rl
T«
RZ
RZ
R3
R3
T5
R3
RZ
T5
R3
RZ
Rl
R3
RZ
R3
04
05
R3
Rl
T3
06
07
Rl
Rl
RZ
RZ
R3
RZ
Rl
OZ
03
Rl
Rl
RZ
RZ
R3
RZ
Rl
Of
01

17
Rl
13
RZ
RZ
RZ
Rl
RZ
15
RZ II
RZ
R3
R3
RZ
R3
RZ
RZ
Rl
RZ
Rl
16
Rl
IZ
RZ
RZ
RZ
Rl
RZ
14
RZ
I f
R3
R3
R3
RZ
R3
RZ
RZ
Rl
RZ
RZ
R3
RZ
R3
Rl
Rl
R3
Rl
R3
Tl
Rl
TS
RZ
RZ
RZ
Rl
RZ
RI
Tl
Rl
TS
RZ
RZ
RZ
Rl
RZ
Rl

IIS
111

Rl
R3

113

19

RZ
Tl

Rl
R3

114

110
Rl
R3

I1Z

18
RZ
T5

Rl
R3

TZ
TZ

T3
T3

TO

T4

Rl
R3

Tf

T4

Rl
R3

8X4 prim itive COB code

Fig. 4.8b. 3-register implementation of HT (continued).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16X5 primitive COB computation

Fig. 4.8c. 3-register implementation of HT (continued).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

62

T il R2 RZ Rl
R1 IIS Rl 14 Rl Rl ♦ T16
R1 Rl ♦ 131 Rl Rl ♦ 130 RZ R2 - T16
R2 17 RZ 16 R3 Rl
R2 RZ + 123 RZ R2 ♦ 122 Rl Rl ♦ T4
R3 R2 R3 R2 R3 R3 - T4
M2 Rl ♦ Rl R2 RZ + Rl 012 Rl
R1 Rl - R3 Rl Rl - R3 013 R3
i» RZ T1Z RZ R3 R2
R2 111 RZ 110 R2 R2 * T il
RZ R2 + 127 RZ Rl ♦ 126 R3 R3 - T il
R3 13 R3 12 014 RZ
R3 R3 * 119 R3 R3 ♦ 118 015 R3
T1 R3 T13 R3 Rl T13
R3 R3 + R2 R3 R3 ♦ R2 Rl Rl ♦ T1Z
RZ R2 - T1 RZ R2 - T13 R2 T19
T1 R3 T13 R3 RZ RZ ♦ T17
R3 R3 ♦ 1» R3 R3 - T12 R3 RZ
TZ R3 T14 R3 RZ RZ ♦ Rl
R3 RZ R3 R2 Rl Rl - R3
RZ RZ ♦ Rl RZ RZ ♦ Rl R3 R2
R1 Rl - R3 Rl Rl - R3 RZ R2 ♦ T8
13 RZ T15 R2 RZ R3 - 18
T4 Rl T16 Rl 08 RZ
R1 113 Rl I1Z 01 R3
R1 Rl ♦ 129 Rl Rl ♦ I 28 RZ T7
RZ IS RZ 14 R2 R2 - TZ
RZ R2 ♦ 121 R2 « 2 * m R3 RZ
M3 RZ R3 9 2 RZ RZ - Rl
RZ RZ ♦ Rl R2 R2 ♦ Rl Rl Rl ♦ R3
R1 Rl - R3 Rl Rl • R3 02 Rl
T5 RZ T17 RZ 03 RZ
RZ 19 RZ 18 Rl T1
RZ R2 > 125 R2 RZ + 124 Rl Rl - T9
R3 11 R3 19 R2 T16
R3 R3 «■ 117 R3 R3 ♦ 116 R2 RZ ♦ T5
T6 R3 T18 R2 R3 RZ
R3 R3 ♦ R2 R3 R3 + RZ RZ RZ ♦ Rl
RZ RZ - T6 RZ R2 - T18 Rl Rl - R3
T6 R3 T19 R3 R3 RZ
R3 R3 + T5 R3 R3 - T17 RZ R2 - TZ1
T7 R3 T20 R3 R3 R3 + T21
R3 R3 ♦ T2 R3 R3 - T7 R2 T29
T8 R3 T21 R3 RZ RZ - T14
R3 RZ R3 RZ R3 Rl
RZ RZ Rl RZ RZ ♦ Rl Rl Rl - R2
Rl Rl - R3 Rl R2 • R3 RZ R2 ♦ R3
T9 RZ T22 R2 06 R2
RZ R2 ♦ T3 RZ R2 + T15 07 Rl
T19 RZ R3 R2 Rl T9
RZ Rl R2 R2 ♦ T18 Rl Rl - T3
Rl Rl T4 R3 R3 - T19 RZ T22
RZ R2 - T4 08 RZ RZ R2 - T15
T* Rl 09 R3 R3 RZ

16X5 prim itive COB code

Fig. 4.8d. 3-register implementation of HT

R2 * R2 ♦ Rl
Rl * R1 - R3
0 1 8 - R2
Oil * R1

(continued).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

63

The time complexity and the Eta value for the O-register
n

implementation of a 2 X(n+1) point prim itive COB is given by:

n
Total time = 6(n+l)2 , Eta = 6.

When an in fin ite number of registers is available, three d ifferent

types of bu tterfly computations ex is t. Each in i t ia l stage bu tte rfly is

computed using 2 Loads, 1 Copy, and 2 Mop(+ »-)- Each fin a l stage

bu tterfly is computed using 1 Copy, 2 Rop(+,-), and 2 Stores. Each of

the remaining bu tterflies is computed using 1 copy and 2 Rop(+,-).
n

These computations are shown in Fig. 4 .9 . Thus, for 2 length
n n n (n-1) n

prim itive COB, 2 Loads, 2 Mop(+,-), n2 Rop(+,-), n2 Copies, and 2
n

Stores are required. Accordingly, the to ta l time for a 2 X(n+1) point

prim itive COB implementation on an in f in ite accumulator machine is:

n n-1
Total time = 6(2) + 3n(2) , Eta = 1.5 + 4 .5 /(n + l) .

4,2.5 Consolidation of Results

Comparing the Eta values of 1-, 2- and in fin ite -reg is te r

implementations with that of O-register implementation, one can note

that for large values of n, by merely structuring the order of

computation, one can obtain savings of 16.7%, 33% and 75% respectively,

in the HT execution time compared to non-structured O-register case.

Table 4.3 lis ts the complexities of various implementations of

prim itive COBs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

64
Table 4.3 Complexities of various implementations of

HT prim itive COBs.

COB Size = 2 X 2 # of computational points: 4

R Load Mop(+,-) Store Copy Rop(+,-) Time Eta

0 4 4 4 0 0 24 6.0
1 3 4 4 0 0 22 5.5
2 2 3 3 0 1 17 4.25
3-» 2 2 2 1 2 15 3.75

COB Size = 4 X 3 # of computational points: 12

0 12 12 12 0 0 72 6
1 8 12 12 0 0 64 5.33
2 5 10 S 1 2 51 4.25
3 4 8 6 4 4 44 3.67
5-«° 4 4 4 4 8 36 3.00

. COB Size = 8 X 4 # of computational points: 32

0 32 32 32 0 0 192 6
1 20 32 32 0 0 168 5.25
2 12 27 24 3 5 134 4.18
3 12 18 16 8 14 114 3.56
9 * * 00 8 8 8 12 24 84 2.63

COB size= 16 X 5 # of computational points: 80

0 80 80 80 0 0 480 6
1 48 80 80 0 0 416 5.2
2 28 68 60 8 12 332 4.15
3 24 50 43 20 30 284 3.55

1 7 - 16 16 16 32 64 192 2.40

As can be seen from Table 4 .3 , choosing a larger prim itive COB

improves the efficiency of algorithm. But in practice, one should

consider both the improvement in time and the increase in code (program)

size to determine the appropriate prim itive COB. A prim itive COB should

be small enough so that the code fo r i t can be generated without

d iff ic u lty . At the same time, i t should be large enough to u t i l iz e a ll

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

65

available registers e ffic ie n tly . The following example illustra tes the

choice of a primitive COB in a machine with three accumulators.

Example: Suppose the target CPU contains 3 accumulators. In order to

fu l ly u t iliz e a l l available registers, 3-register implementations of

prim itive COBs should be used. Based on the parameters listed in Table

4.4 , an appropriate prim itive COB may be chosen as follows.

Table 4.4 Change in the values of Eta for various prim itive COBs

prim itive COB Time/COB Eta % decrease in Eta from previous line

2X2 15 3.75 . . .

4X3 44 3.67 2.13
8X4 114 3.56 3.00

16X5 284 3.55 0.28

The code size for a COB is d irec tly proportional to the execution time

for the COB. Thus as we go down the COBs iisted in Table 4 .4 , the code

size multiplies by a factor of approximately 1.5 each time. An

inspection of Table 4.4 now shows that a prim itive COB of 8X4 points is

probably the best in these circumstances. I f the size of this COB is

further increased, i t has a marginal effect on Eta but the code size

increases by 149*.

4.3 Implementation of a complete HT through prim itive COBs

This section discusses the issues involved in the implementation of
12

a complete graph through an example of 2 length HT. I f the primitive
t

COBs of types discussed ea rlie r with 2 X(t+1) points are used to cover
n (n-1)

a 2 length HT, then a to ta l of n2 /(t+ 1) prim itive COBs would be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

66

required. Thus the odd divisors of (t+1) should divide n. In the.

present case, i t rules out the 16X5 prim itive COB. The 2048 X 12 point

prim itive COB also need not be considered because of its excessive code

size.

I f one uses the 2X2 prim itive COBs, the resultant implementation has

six computing stages, each with 2048 COBs. A ll six stages may be made

identical by rearranging the graph of HT [2 0],[2 1]. Thus the code for

each stage is identical except fo r the memory locations of input and

output data. Further, every pair of consecutive stages may have an
12

in-place code. Therefore, software for the entire 2 length HT may

consist of the code fo r the f i r s t 2 stages placed in a loop, thus

reducing the code size by approximately 66.7%.

Use of 4X3 prim itive COBs sim ilarly results in 4 identical stages,

each with 1024 COBs. Use of a loop reduces the code size by

approximately 50%.

Use of 8X4 prim itive COBs implies 3 identical stages each with 512

COBs. Use of a loop is not beneficial in this case.

F inally , i f 32X6 prim itive COBs are used for the implementation,

there are only 2 identical stages each with 128 COBs. As in the e arlie r

case, a loop is not useful.

The execution time of the complete HT depends upon both the size

of the prim itive COB used and the number of registers available to

implement each prim itive COB. Table 4.5 and F ig .4.9 display the results

obtained. While calculating the code sizes, the possib ility of using

the in-place algorithm is kept in mind. One may conclude from these

that the computational time of HT is largely independent of the choice

of prim itive COB. Also, using a machine with more than three registers

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(1000 t 1 « u n i ts)
300

COB SIZE

32 X 6
2048 X 12

250

200

150

■ l ,-------------------------------------
0 1 2 3 (regi sters)

Fig. 4 .9 . Time complexity of various implementations

of 2 ^ length HT.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

68
is not ju s tifie d in this case. A good trade o ff between the time and

the code size is obtained when one uses a 3-register machine and a 2X2

prim itive COB.

12
Table 4 .5 . Implementation of 2 length HT

O-register implementation

prim.
COB

of prim itive
COBs within HT

Time per
prim. COB

Total Time
fo r HT

Eta of
Prim. COB

Code Size
for HT

2X2 12288 24 294912 6.00 98304
4X3 4096 72 294912 6.00 147456
8X4 1536 192 294912 6.00 294912

32X6 256 1152 294912 6.00 294912
2048X12 2 147456 294912 6.00 294912

1-register implementation

2X2 12288 22 270336 5.50 90112
4X3 4096 64 262144 5.33 131072
8X4 1536 168 258048 5.25 258048

32X6 256 992 253952 5.17 253952
2048X12 2 124928 249856 5.08 249856

2-register implementation

2X2 12288 17 208896 4.25 69632
4X3 4096 51 208896 4.25 104448
8X4 1536 134 205824 4.18 205824

32X6 256 792 202752 4.13 202752
2048X12 2 99846 199692 4.06 199692

3-register implementation

2X2 12288 15 184320 3.75 61440
4X3 4096 44 180224 3.67 90112
8X4 1536 114 175104 3.56 175104

4.4 Fast Fourier Transform(FFT)

In this section, two primitive COBs for FFT are presented and

implemented using 0 to in fin ite number of registers. They are then
8

applied to implement a 2 length FFT.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

69

4.4.1 2-Point Primitive COB

The graph shown in Fig. 4.10 computes two complex points in the FFT

graph and hence is termed as the 2-point prim itive COB. The 1- and 2-

register implementations and the associated codes are shown in Fig.

4.11. The implementation of th is small prim itive COB does not change i f

the number of registers is increased beyond 2.

4 .4 .2 4-Point Prim itive COB

The graph of a 4-point prim itive COB is shown in the Fig. 3 .2 .

Figures 3.3 through 3.11 then show its 1- through 9-register

implementations. A further increase in the number of registers does not

affect the implementation of th is COB.

4 .4 .3 Consolidation of Results

The complexities of the two FFT COBs and, in particular, th e ir

dependence on the number of registers in the machine is shown in Table

4.6 . These results indicate that while using the 2-point COB, a 2-

register machine w ill perform optimally and even for the 4-point COB

increasing the number of registers beyond 5 has very l i t t l e e ffect on

the time complexity.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fig. 4.10. Computational graph of 2-point FFT.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

72

Table 4.6 Complexities of various implementations of
FFT prim itive COBs.

COB size - 2 X 1 # of complex computational points = 2

R Load Mop(+,-) Mop(x) Rop(+, -) Copy Store Time Eta % dec.in Eta

0 10 6 4 0 0 10 68 34 •

1 6 6 4 0 0 8 56 28 17.65
2- 4 4 4 2 2 4 44 22 21.43

COB size = 4 X 2 # of complex computational points = 8

0 40 24 16 0 0 40 272 34.000 •

1 20 24 16 0 0 32 216 27.000 20.59
2 13 17 16 7 6 19 175 21.875 18.98
3 12 14 16 10 8 16 166 20.750 5.14
4 12 11 16 13 8 14 159 19.875 4.22
5 12 8 16 16 8 12 152 19.000 4.40
6 11 8 16 16 9 11 149 18.625 1.97
7 10 8 16 16 10 10 146 18.250 2.01
8 9 8 16 16 11 9 143 17.875 2.05
9- 8 8 16 16 12 8 140 17.500 2.10

8
4.5 Implementation of 2 Length FFT

8
An implementation of 2 length FFT using 2-point primitive COBs

results in 8 identical computational stages of 128 COBs each. As for

the case of HT, a pair of these stages may be calculated in-place

[20,21]. The size of code may therefore be reduced by 75% by using the

loop as described in Section 4 .3 . S im ilarly, use of 4-point prim itive

COBs produces 4 identical stages of 64 COBs each. Use of a loop, in

th is case, w ill reduce the code size by 50%. Table 4.7 and Fig. 4.11

display various factors affected by the choice of a particular

implementation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

73

8
Table 4.7 Implementation of 2 length FFT

O-register implementation

Prim.
COB

of prim.COBs
within FFT

Time per Total time Eta of
Prim.COB fo r FFT prim.COB

Code size
fo r FFT

2X1 1024 68 69632 34 17408
4X2 256 272 69632 34 34816

1-reg ister implementation

2X1 1024 56 57344 28 14336
4X2 256 216 55296 27 27648

2-register implementation

2X1 1024 44 45056 22 11264
4X2 256 175 44800 21.875 22400

3-register implementation

2X1
4X2

1024
256

44
166

45056 22
42496 20.75

11264
21248

4-register implementation

2X1 1024 44 45056 22 11264
4X2 256 159 40704 19.875 20352

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

74

)000 tin * units)
7 0 - ,

2 p o in t FFT
« p o in t FFT

50 J

10 1

4 (registers)

oFig. 4.12. Time complexity of various implementations of 2 length FFT.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5

CONCLUSIONS

This chapter reviews the results obtained during th is work. After

summarizing the useful results in Section 5.1, and th e ir applications in

Section 5 .2 , future research areas are identified in Section 5.3.

5.1 Summary of Selected Results

This work for the f i r s t time provides the means to design an

implementation of a given arb itrary computational graph, while taking

into account the number of accumulators available in the processor. The

1-register algorithm of Chapter 2 can be applied to form a time

e ffic ie n t algorithm for the graph implemented on a one accumulator

processor. Since most of the general purpose microprocessors available

today have one accumulator, the results obtained here are universally

useful. This 1-register algorithm is extended to r-reg is ter algorithm

in Chapter 3. Given a machine containing n general purpose registers,

any computational graph can be subjected to 1- and r-reg is ter algorithms

to form a time e ffic ie n t implementation. Furthermore, since most signal

processing algorithms contain regular structures, a computational

kernel, called a prim itive COB here, may be used repeatedly to cover the

complete graph, as shown in Chapter 4. The prim itive COB may be

subjected to the algorithms derived in this thesis to obtain its

e ffic ie n t code for any given processor. By repeating this basic code,

one may then obtain an e ffic ie n t code for the complete graph.

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

76
The results obtained in Chapter 4 point out several important

facts. F irs t, for a given computational graph, the time complexity

decreases exponentially as the number of registers increases (See Figs.

4.9 and 4 .11). This result implies that the increase in the number of

registers a fte r a certain point does not y ield a profitable decrease in

time complexity. (For Hadamard transform, this is a modest three

accumulator architecture). Consequently, an arb itrary increase in the

number of accumulators in processor design is not ju s tifie d since the

cost of hardware in fla tes very rapidly as the number of accumulators

increases. Another important resu lt obtained is that the size of

prim itive COB does not a ffect the time complexity s ign ificantly , as long

as i t is large enough to fu lly u t i l iz e a l l available registers. One may

thus choose a small and e ffic ie n t prim itive COB, so that writing the

code for i t is a t r iv ia l task.

5.2 Significance of the Results

The importance of this work is mainly due to the wide ap p licab ility

of the algorithms developed in Chapters 2 and 3. These algorithms

enable one to design a time e ffic ie n t code by giving due consideration

to the hardware architecture, in particu lar, the number of registers

contained in the CPU. These algorithms enable one to u t i l iz e the

hardware capabilities to th e ir fu lle s t extent, thus improving the

performance without any additional cost.

Another potential application of th is research is to provide means

to evaluate various architectures with respect to a given algorithm.

The procedures of Chapters 2 and 3 allow one to systematically study the

trade offs between various factors such as the time complexity, hardware

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

77

complexity and code size. This enables one to choose a good engineering

design in most practical situations.

F ina lly , th is work also brings out the concept of a prim itive COB.

A prim itive COB can be used for automatic generation of software for

large signal processing problems and to reduce the code size of an

algorithm without sacrificing time effic iency. I t may also have a

significant impact on the design of special purpose para lle l processing

hardware for signal processing applications.

5.3 Suggestions for Further Work

The verification on an actual multi-accumulator machine of the

various implementations obtained here is highly desirable. I t was not

possible to carry this out mainly due to the time lim itation and also

because of the lack of good multi-accumulator processors. Since most of

the available microprocessors have architectures geared towards high-

level language implementations rather than numerical applications, i t is

necessary to design a multi-accumulator hardware for this verifica tion .

Such a hardware design would use b it-s lic e microprocessors AM2901 or

AM2903 [22-24], since they have a su ffic ient number of registers fo r our

purpose and belong to a family that has a large number of support ICs.

Another potential area for future research is the investigation of

the relationship between a graph structure and its ultimate

implementation on a f in ite register SISD machine. In particu lar, one

may be able to restructure the computational graph without affecting the

fin a l results, such that the restructured graph may have a highly

e ffic ie n t implentation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

78

Finally i t should be mentioned that the r-dimensional COB model may

not yie ld optimum results in some cases and merits further attention.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

79

REFERENCES

[1] S. Winograd, "On computing the Discrete Fourier Transform," Proc.
Nat. Acad. S c i., U.S.A., vol. 73, pp. 1005*1006, Apr. 1976.

[2] J. W. Cooley and J. W. Tukey, "An algorithm for the machine
calculation of Complex Fourier Series," Nath, of Com., vol. 19,
pp. 296-301, 1965.

[3] L. R. Norris, "A comparative study of time e ffic ie n t FFT and WFTA
programs for general purpose computers," IEEE Trans. Acoust., Speech
and Signal Processing, vol. ASSP-26, no.2, pp. 141-150, Apr. 1978.

[4] H. D. Toong and A. Gupta, "An architectural comparison of
contemporary 16-bit microprocessors," IEEE Nicro, vol. 1, pp. 26-37,
Nay 1981.

[5] Component Data Catalog, In te l Corporation, Santa Clara, CA, 1982.

[6] Z80 Microcomputer Data Book, Nostek Corp., Carrollton, TX, 1981.

[7] Electronic Device Division Data Catalog, Rockwell International,
Anaheim, CA, 1981.

[8] Microprocessor Data Nanual, Motorola In c ., Austin, TX, 1981.

[9] J. P. Anderson, "A note on some compiling algorithms," Comm. ACM,
vol. 7, no. 3, pp. 149-150, Mar. 1964.

[10] I . Nakata, "On compiling algorithms for arithmetic expressions,"
Comm. ACM, vol. 10, no. 8, pp. 492-494, Aug. 1967.

[11] N. M. Brenner, "Fast Fourier Transform of externally stored data,"
IEEE Trans. Audio Electroacoust., vol. AU-17, no. 2, pp. 128-132,
June 1969.

[12] P. S. Naidu, "FFT of externally stored data," IEEE Trans. Acoust.,
Speech, and Signal Processing, vol. ASSP-26, no. 5, pp. 473, 1970.

[13] J. 0. Exlundh, "A fast computer method for matrix transposition,"
IEEE Trans. Computers, vol. C-21, no. 7, pp. 801-803, July 1972.

[14] P. S. Naidu, "Fast matrix transpose computer implementation," Signal
Processing, North Holland Publishing Company, pp. 457-459, Mar.
1982.

[15] H. Nawab and J. H. McClellan, "Bounds on the minimum number of data
transfers in WFTA and FFT programs," IEEE Trans. Acoust., Speech and
Signal Processing, vol. ASSP-27, no. 4, pp. 394-398, Aug. 1979.

[16] M. J. Flynn, "Very high-speed computing system," IEEE Proc., vol.
54, no. 12, pp. 1901-1909, Dec. 1966.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

80

[17] Peter M. Kogge, The Architecture of Pipelined Computers, New York:
McGraw-Hill, In c ., 1581.

[18] J. L. P fa ltz , Computer Data Structures, New York: McGraw-Hill,
In c ., 1977.

[19] L. R. Morris, “Automatic generation of time e ffic ie n t d ig ita l
signal processing software," IEEE Trans. Acoust., Speech and
Signal Processing, vol. ASSP-25, no. 1, pp. 74-79, February 1977.

[20] A. V. Oppenheim and R. VI. Schafer, D ig ita l Signal Processing,
Englewood C l i f f , NJ: Prentice-Hall, l§7b.

[21] L. R. Rabiner and B. Gold, Theory and Application of Signal
Processing, Englewood C l i f f , NJ: Prentice-HaiI, !9/t>.

[22] 0. Mick and J. Brick, B it-S lice Microprocessor Design,
New York: McGraw-Hill, in c ., I98d.

[23] G. J. Myers, D ig ita l System Design with LSI B it-S lice Logic,
New York: Wiley Interscience, 1980.

[24] D. E. White, B it-S lice Design: Controller and ALUs, New York:
Garland STPM Press, 1981.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Design of Efficient Algorithms Through Minimization of Data Transfers
	Recommended Citation

	tmp.1563808064.pdf.8DZex

