16 research outputs found

    Analysis of Base Excision and Single-Strand Break Repair Activities in Trypanosomatid Extracts

    No full text
    Cellular DNA is inherently unstable, subject to both spontaneous hydrolysis and attack by a range of exogenous and endogenous chemicals as well as physical agents such as ionizing and ultraviolet radiation. For parasitic protists, where an inoculum of infectious parasites is typically small and natural infections are often chronic with low parasitemia, they are also vulnerable to DNA damaging agents arising from innate immune defenses. The majority of DNA damage consists of relatively minor changes to the primary structure of the DNA, such as base deamination, oxidation, or alkylation and scission of the phosphodiester backbone. Yet these small changes can have serious consequences, often being mutagenic or cytotoxic. Cells have therefore evolved efficient mechanisms to repair such damage, with base excision and single strand break repair playing the primary role here. In this chapter we describe a method for analyzing the activity from cell extracts of various enzymes involved in the base excision and single strand break repair pathways of trypanosomatid parasites

    Transcription of liver X receptor is down-regulated by 15-deoxy-Δ12,14-prostaglandin J2 through oxidative stress in human neutrophils

    Get PDF
    Liver X receptors (LXRs) are ligand-activated transcription factors of the nuclear receptor superfamily. They play important roles in controlling cholesterol homeostasis and as regulators of inflammatory gene expression and innate immunity, by blunting the induction of classical pro-inflammatory genes. However, opposite data have also been reported on the consequences of LXR activation by oxysterols, resulting in the specific production of potent pro-inflammatory cytokines and reactive oxygen species (ROS). The effect of the inflammatory state on the expression of LXRs has not been studied in human cells, and constitutes the main aim of the present work. Our data show that when human neutrophils are triggered with synthetic ligands, the synthesis of LXRα mRNA became activated together with transcription of the LXR target genes ABCA1, ABCG1 and SREBP1c. An inflammatory mediator, 15-deoxy-Δ12,14-prostaglandin J2 (15dPGJ2), hindered T0901317-promoted induction of LXRα mRNA expression together with transcription of its target genes in both neutrophils and human macrophages. This down-regulatory effect was dependent on the release of reactive oxygen species elicited by 15dPGJ2, since it was enhanced by pro-oxidant treatment and reversed by antioxidants, and was also mediated by ERK1/2 activation. Present data also support that the 15dPGJ2-induced serine phosphorylation of the LXRα molecule is mediated by ERK1/2. These results allow to postulate that down-regulation of LXR cellular levels by pro-inflammatory stimuli might be involved in the development of different vascular diseases, such as atherosclerosis.Funding provided by the Ministerio de Educación y Ciencia (BFU2006-13802) and the Consejería de Innovación, Ciencia y Empresa, Junta de Andalucía (P08-CVI-03550) (P06-CTS-01936) Consejería de Salud, Junta de Andalucía (CS 0116/2007)

    Liver X receptors in lipid metabolism: opportunities for drug discovery

    No full text
    corecore