175 research outputs found

    Two distinct nanovirus species infecting faba bean in Morocco

    Get PDF
    Using monoclonal antibodies raised against a Faba bean necrotic yellows virus (FBNYV) isolate from Egypt and a Faba bean necrotic stunt virus (FBNSV) isolate from Ethiopia, a striking serological variability among nanovirus isolates from faba bean in Morocco was revealed. To obtain a better understanding of this nanovirus variability in Morocco, the entire genomes of two serologically contrasting isolates referred to as Mor5 and Mor23 were sequenced. The eight circular ssDNA components, each identified from Mor5- and Mor23-infected tissues and thought to form the complete nanovirus genome, ranged in size from 952 to 1,005 nt for Mor5 and from 980 to 1,004 nt for Mor23 and were structurally similar to previously described nanovirus DNAs. However, Mor5 and Mor23 differed from each other in overall nucleotide and amino acid sequences by 25 and 26%, respectively. Mor23 was most closely related to typical FBNYV isolates described earlier from Egypt and Syria, with which it shared a mean amino acid sequence identity of about 94%. On the other hand, Mor5 most closely resembled a FBNSV isolate from Ethiopia, with which it shared a mean amino acid sequence identity of approximately 89%. The serological and genetic differences observed for Mor5 and Mor23 were comparable to those observed earlier for FBNYV, FBNSV, and Milk vetch dwarf virus. Following the guidelines on nanovirus species demarcation, this suggests that Mor23 and Mor5 represent isolates of FBNYV and FBNSV, respectively. This is the first report not only on the presence of FBNSV in a country other than Ethiopia but also on the occurrence and complete genome sequences of members of two nanovirus species in the same country, thus providing evidence for faba bean crops being infected by members of two distinct nanovirus species in a restricted geographic area

    Leptotene/Zygotene Chromosome Movement Via the SUN/KASH Protein Bridge in Caenorhabditis elegans

    Get PDF
    The Caenorhabditis elegans inner nuclear envelope protein matefin/SUN-1 plays a conserved, pivotal role in the process of genome haploidization. CHK-2–dependent phosphorylation of SUN-1 regulates homologous chromosome pairing and interhomolog recombination in Caenorhabditis elegans. Using time-lapse microscopy, we characterized the movement of matefin/SUN-1::GFP aggregates (the equivalent of chromosomal attachment plaques) and showed that the dynamics of matefin/SUN-1 aggregates remained unchanged throughout leptonene/zygotene, despite the progression of pairing. Movement of SUN-1 aggregates correlated with chromatin polarization. We also analyzed the requirements for the formation of movement-competent matefin/SUN-1 aggregates in the context of chromosome structure and found that chromosome axes were required to produce wild-type numbers of attachment plaques. Abrogation of synapsis led to a deceleration of SUN-1 aggregate movement. Analysis of matefin/SUN-1 in a double-strand break deficient mutant revealed that repair intermediates influenced matefin/SUN-1 aggregate dynamics. Investigation of movement in meiotic regulator mutants substantiated that proper orchestration of the meiotic program and effective repair of DNA double-strand breaks were necessary for the wild-type behavior of matefin/SUN-1 aggregates

    Targeting cyclin B1 inhibits proliferation and sensitizes breast cancer cells to taxol

    Get PDF
    Background Cyclin B1, the regulatory subunit of cyclin-dependent kinase 1 (Cdk1), is essential for the transition from G2 phase to mitosis. Cyclin B1 is very often found to be overexpressed in primary breast and cervical cancer cells as well as in cancer cell lines. Its expression is correlated with the malignancy of gynecological cancers. Methods In order to explore cyclin B1 as a potential target for gynecological cancer therapy, we studied the effect of small interfering RNA (siRNA) on different gynecological cancer cell lines by monitoring their proliferation rate, cell cycle profile, protein expression and activity, apoptosis induction and colony formation. Tumor formation in vivo was examined using mouse xenograft models. Results Downregulation of cyclin B1 inhibited proliferation of several breast and cervical cancer cell lines including MCF-7, BT-474, SK-BR-3, MDA-MB-231 and HeLa. After combining cyclin B1 siRNA with taxol, we observed an increased apoptotic rate accompanied by an enhanced antiproliferative effect in breast cancer cells. Furthermore, control HeLa cells were progressively growing, whereas the tumor growth of HeLa cells pre-treated with cyclin B1 siRNA was strongly inhibited in nude mice, indicating that cyclin B1 is indispensable for tumor growth in vivo. Conclusion Our data support the notion of cyclin B1 being essential for survival and proliferation of gynecological cancer cells. Concordantly, knockdown of cyclin B1 inhibits proliferation in vitro as well as in vivo. Moreover, targeting cyclin B1 sensitizes breast cancer cells to taxol, suggesting that specific cyclin B1 targeting is an attractive strategy for the combination with conventionally used agents in gynecological cancer therapy

    Small intestinal mucosa expression of putative chaperone fls485

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Maturation of enterocytes along the small intestinal crypt-villus axis is associated with significant changes in gene expression profiles. <it>fls485 </it>coding a putative chaperone protein has been recently suggested as a gene involved in this process. The aim of the present study was to analyze <it>fls48</it>5 expression in human small intestinal mucosa.</p> <p>Methods</p> <p><it>fls485 </it>expression in purified normal or intestinal mucosa affected with celiac disease was investigated with a molecular approach including qRT-PCR, Western blotting, and expression strategies. Molecular data were corroborated with several <it>in situ </it>techniques and usage of newly synthesized mouse monoclonal antibodies.</p> <p>Results</p> <p>fls485 mRNA expression was preferentially found in enterocytes and chromaffine cells of human intestinal mucosa as well as in several cell lines including Rko, Lovo, and CaCo2 cells. Western blot analysis with our new anti-fls485 antibodies revealed at least two fls485 proteins. In a functional CaCo2 model, an increase in fls485 expression was paralleled by cellular maturation stage. Immunohistochemistry demonstrated fls485 as a cytosolic protein with a slightly increasing expression gradient along the crypt-villus axis which was impaired in celiac disease Marsh IIIa-c.</p> <p>Conclusions</p> <p>Expression and synthesis of fls485 are found in surface lining epithelia of normal human intestinal mucosa and deriving epithelial cell lines. An interdependence of enterocyte differentiation along the crypt-villus axis and fls485 chaperone activity might be possible.</p

    piggybac- and PhiC31-Mediated Genetic Transformation of the Asian Tiger Mosquito, Aedes albopictus (Skuse)

    Get PDF
    The Asian tiger mosquito, Aedes albopictus, is a highly invasive mosquito and has spread from South East Asia to Europe, the United States and northern areas of Asia in the past 30 years. Aedes mosquitoes transmit a range of viral diseases, including dengue and chikungunya. Aedes albopictus is generally considered to be somewhat less of a concern in this regard than Aedes aegypti. However a recent mutation in the chikungunya virus dramatically increased its transmission by Aedes albopictus, causing an important outbreak in the Indian Ocean in 2006 that eventually reached Italy in 2007. This highlights the potential importance of this mosquito, which can thrive much further from the Equator than can Aedes aegypti. This paper describes the first genetic engineering of the Asian tiger mosquito. This is an essential step towards the development of genetics-based control methods against this mosquito, and also an invaluable tool for basic research. We describe both transposon-based and site-specific integration methods

    Suppression of Ribosomal Function Triggers Innate Immune Signaling through Activation of the NLRP3 Inflammasome

    Get PDF
    Some inflammatory stimuli trigger activation of the NLRP3 inflammasome by inducing efflux of cellular potassium. Loss of cellular potassium is known to potently suppress protein synthesis, leading us to test whether the inhibition of protein synthesis itself serves as an activating signal for the NLRP3 inflammasome. Murine bone marrow-derived macrophages, either primed by LPS or unprimed, were exposed to a panel of inhibitors of ribosomal function: ricin, cycloheximide, puromycin, pactamycin, and anisomycin. Macrophages were also exposed to nigericin, ATP, monosodium urate (MSU), and poly I:C. Synthesis of pro-IL-ß and release of IL-1ß from cells in response to these agents was detected by immunoblotting and ELISA. Release of intracellular potassium was measured by mass spectrometry. Inhibition of translation by each of the tested translation inhibitors led to processing of IL-1ß, which was released from cells. Processing and release of IL-1ß was reduced or absent from cells deficient in NLRP3, ASC, or caspase-1, demonstrating the role of the NLRP3 inflammasome. Despite the inability of these inhibitors to trigger efflux of intracellular potassium, the addition of high extracellular potassium suppressed activation of the NLRP3 inflammasome. MSU and double-stranded RNA, which are known to activate the NLRP3 inflammasome, also substantially inhibited protein translation, supporting a close association between inhibition of translation and inflammasome activation. These data demonstrate that translational inhibition itself constitutes a heretofore-unrecognized mechanism underlying IL-1ß dependent inflammatory signaling and that other physical, chemical, or pathogen-associated agents that impair translation may lead to IL-1ß-dependent inflammation through activation of the NLRP3 inflammasome. For agents that inhibit translation through decreased cellular potassium, the application of high extracellular potassium restores protein translation and suppresses activation of the NLRP inflammasome. For agents that inhibit translation through mechanisms that do not involve loss of potassium, high extracellular potassium suppresses IL-1ß processing through a mechanism that remains undefined

    Weight outcomes audit in 1.3 million adults during their first 3 months' attendance in a commercial weight management programme

    Get PDF
    Background: Over sixty percent of adults in the UK are now overweight/obese. Weight management on a national scale requires behavioural and lifestyle solutions that are accessible to large numbers of people. Evidence suggests commercial weight management programmes help people manage their weight but there is little research examining those that pay to attend such programmes rather than being referred by primary care. The objective of this analysis was to evaluate the effectiveness of a UK commercial weight management programme in self-referred, fee-paying participants. Methods: Electronic weekly weight records were collated for self-referred, fee-paying participants of Slimming World groups joining between January 2010 and April 2012. This analysis reports weight outcomes in 1,356,105 adult, non-pregnant participants during their first 3 months’ attendance. Data were analysed by regression, ANOVA and for binomial outcomes, chi-squared tests using the R statistical program. Results: Mean (SD) age was 42.3 (13.6) years, height 1.65 m (0.08) and start weight was 88.4 kg (18.8). Mean start BMI was 32.6 kg/m² (6.3 kg/m²) and 5 % of participants were men. Mean weight change of all participants was −3.9 kg (3.6), percent weight change −4.4 (3.8), and BMI change was −1.4 kg/m² (1.3). Mean attendance was 7.8 (4.3) sessions in their first 3 months. For participants attending at least 75 % of possible weekly sessions (n = 478,772), mean BMI change was −2.5 kg/m² (1.3), weight change −6.8 kg (3.7) and percent weight change −7.5 % (3.5). Weight loss was greater in men than women absolutely (−6.5 (5.3) kg vs −3.8 (3.4) kg) and as a percentage (5.7 % (4.4) vs 4.3 % (3.7)), respectively. All comparisons were significant (p < 0.001). Level of attendance and percent weight loss in the first week of attendance together accounted for 55 % of the variability in weight lost during the study period. Conclusions: A large-scale commercial lifestyle-based weight management programme had a significant impact on weight loss outcomes over 3 months. Higher levels of attendance led to levels of weight loss known to be associated with significant clinical benefits, which on this scale may have an impact on public health

    A Natural Combination Extract of Viscum album L. Containing Both Triterpene Acids and Lectins Is Highly Effective against AML In Vivo

    Get PDF
    Aqueous Viscum album L. extracts are widely used in complementary cancer medicine. Hydrophobic triterpene acids also possess anti-cancer properties, but due to their low solubility they do not occur in significant amounts in aqueous extracts. Using cyclodextrins we solubilised mistletoe triterpenes (mainly oleanolic acid) and investigated the effect of a mistletoe whole plant extract on human acute myeloid leukaemia cells in vitro, ex vivo and in vivo. Single Viscum album L. extracts containing only solubilised triterpene acids (TT) or lectins (viscum) inhibited cell proliferation and induced apoptosis in a dose-dependent manner in vitro and ex vivo. The combination of viscum and TT extracts (viscumTT) enhanced the induction of apoptosis synergistically. The experiments demonstrated that all three extracts are able to induce apoptosis via caspase-8 and -9 dependent pathways with down-regulation of members of the inhibitor of apoptosis and Bcl-2 families of proteins. Finally, the acute myeloid leukaemia mouse model experiment confirmed the therapeutic effectiveness of viscumTT-treatment resulting in significant tumour weight reduction, comparable to the effect in cytarabine-treated mice. These results suggest that the combination viscumTT may have a potential therapeutic value for the treatment AML

    Intracerebral Human Regulatory T Cells: Analysis of CD4+CD25+FOXP3+ T Cells in Brain Lesions and Cerebrospinal Fluid of Multiple Sclerosis Patients

    Get PDF
    Impaired suppressive capacity of CD4+CD25+FOXP3+ regulatory T cells (Treg) from peripheral blood of patients with multiple sclerosis (MS) has been reported by multiple laboratories. It is, however, currently unresolved whether Treg dysfunction in MS patients is limited to reduced control of peripheral T cell activation since most studies analyzed peripheral blood samples only. Here, we assessed early active MS lesions in brain biopsies obtained from 16 patients with MS by FOXP3 immunohistochemistry. In addition, we used six-color flow cytometry to determine numbers of Treg by analysis of FOXP3/CD127 expression in peripheral blood and cerebrospinal fluid (CSF) of 17 treatment-naïve MS patients as well as quantities of apoptosis sensitive CD45ROhiCD95hi cells in circulating and CSF Treg subsets. Absolute numbers of FOXP3+ and CD4+ cells were rather low in MS brain lesions and Treg were not detectable in 30% of MS biopsies despite the presence of CD4+ cell infiltrates. In contrast, Treg were detectable in all CSF samples and Treg with a CD45ROhiCD95hi phenotype previously shown to be highly apoptosis sensitive were found to be enriched in the CSF compared to peripheral blood of MS patients. We suggest a hypothetical model of intracerebral elimination of Treg by CD95L-mediated apoptosis within the MS lesion

    Circuit-based interrogation of sleep control.

    Get PDF
    Sleep is a fundamental biological process observed widely in the animal kingdom, but the neural circuits generating sleep remain poorly understood. Understanding the brain mechanisms controlling sleep requires the identification of key neurons in the control circuits and mapping of their synaptic connections. Technical innovations over the past decade have greatly facilitated dissection of the sleep circuits. This has set the stage for understanding how a variety of environmental and physiological factors influence sleep. The ability to initiate and terminate sleep on command will also help us to elucidate its functions within and beyond the brain
    corecore