112 research outputs found

    The ROS Scavenger, NAC, Regulates Hepatic Vα14iNKT Cells Signaling during Fas mAb-Dependent Fulminant Liver Failure

    Get PDF
    Uncontrolled systemic activation of the immune system is an early initiating event that leads to development of acute fulminant liver failure (FLF) in mice after treatment with agonistic Fas mAb. In this study, we demonstrate that treatment of mice with N-acetylcysteine (NAC), an ROS scavenger and glutathione (GSH) precursor, almost completely abolished Fas mAb-induced FLF through suppression of Vα14iNKT cell activation, IFN-γ signaling, apoptosis and nitrotyrosine formation in liver. In addition, enrichment of the liver with GSH due to Vα14iNKT cells deficiency, induced an anti-inflammatory response in the liver of Jα18−/− mice that inhibited apoptosis, nitrotyrosine formation, IFN-γ signaling and effector functions. In summary, we propose a novel and previously unrecognized pro-inflammatory and pro-apoptotic role for endogenous ROS in stimulating Th1 signaling in Vα14iNKT cells to promote the development of FLF. Therefore, our study provides critical new insights into how NAC, a ROS scavenger, regulates Th1 signaling in intrahepatic Vα14iNKT cells to impact inflammatory and pathological responses

    Gender-differences of in vitro colonic motility after chemo- and radiotherapy in humans.

    Get PDF
    Background: The aim of the present in vitro study was to investigate, in different genders, motor responses in surgical colonic specimens from patients with rectal cancer undergoing and not undergoing chemotherapy with capecitabine and radiotherapy. Methods: This in vitro study was conducted from October 2015 to August 2017 at the Experimental Pharmacology Laboratory at the National Institute “S. de Bellis” after collecting samples at the Department of Surgery. Segments of sigmoid colon were obtained from 15 patients (Male (M)/Female (F) = 8/7; control group, CG) operated on for elective colorectal resection for rectal cancer without obstruction and 14 patients (M/F = 7/7; study group, SG) operated on for elective colorectal resection for rectal cancer who also received chemotherapy, based on capecitabine twice daily, and radiotherapy. Isometric tension was measured on colonic circular muscle strips exposed to increasing carbachol or histamine concentrations to obtain concentration-response curves. The motor responses to electrically evoked stimulation were also investigated. Results: In males, carbachol and histamine caused concentration-dependent contractions in the CG and SG. An increased sensitivity and a higher response to carbachol and histamine were observed in SG than CG (P < 0.01). On the contrary, in females, the response to carbachol was not significantly different in CG from the SG and the maximal responses to carbachol were greater in CG than in SG (P < 0.001). The same applied to histamine for half-maximal effective concentrations and maximal response in that they were not significantly different in CG from the SG. Electrically evoked contractions were significantly more pronounced in males, especially in the SG (P < 0.05). Conclusions: This preliminary in vitro study has shown gender differences in motor responses of colonic circular muscle strips in patients who had received chemotherapy with capecitabine and radiotherapy

    Functional Contribution of Elevated Circulating and Hepatic Non-Classical CD14+CD16+ Monocytes to Inflammation and Human Liver Fibrosis

    Get PDF
    BACKGROUND: Monocyte-derived macrophages critically perpetuate inflammatory responses after liver injury as a prerequisite for organ fibrosis. Experimental murine models identified an essential role for the CCR2-dependent infiltration of classical Gr1/Ly6C(+) monocytes in hepatic fibrosis. Moreover, the monocyte-related chemokine receptors CCR1 and CCR5 were recently recognized as important fibrosis modulators in mice. In humans, monocytes consist of classical CD14(+)CD16(-) and non-classical CD14(+)CD16(+) cells. We aimed at investigating the relevance of monocyte subpopulations for human liver fibrosis, and hypothesized that 'non-classical' monocytes critically exert inflammatory as well as profibrogenic functions in patients during liver disease progression. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed circulating monocyte subsets from freshly drawn blood samples of 226 patients with chronic liver disease (CLD) and 184 healthy controls by FACS analysis. Circulating monocytes were significantly expanded in CLD-patients compared to controls with a marked increase of the non-classical CD14(+)CD16(+) subset that showed an activated phenotype in patients and correlated with proinflammatory cytokines and clinical progression. Correspondingly, CD14(+)CD16(+) macrophages massively accumulated in fibrotic/cirrhotic livers, as evidenced by immunofluorescence and FACS. Ligands of monocyte-related chemokine receptors CCR2, CCR1 and CCR5 were expressed at higher levels in fibrotic and cirrhotic livers, while CCL3 and CCL4 were also systemically elevated in CLD-patients. Isolated monocyte/macrophage subpopulations were functionally characterized regarding cytokine/chemokine expression and interactions with primary human hepatic stellate cells (HSC) in vitro. CD14(+)CD16(+) monocytes released abundant proinflammatory cytokines. Furthermore, CD14(+)CD16(+), but not CD14(+)CD16(-) monocytes could directly activate collagen-producing HSC. CONCLUSIONS/SIGNIFICANCE: Our data demonstrate the expansion of CD14(+)CD16(+) monocytes in the circulation and liver of CLD-patients upon disease progression and suggest their functional contribution to the perpetuation of intrahepatic inflammation and profibrogenic HSC activation in liver cirrhosis. The modulation of monocyte-subset recruitment into the liver via chemokines/chemokine receptors and their subsequent differentiation may represent promising approaches for therapeutic interventions in human liver fibrosis

    Global gene expression analysis of the mouse colonic mucosa treated with azoxymethane and dextran sodium sulfate

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chronic inflammation is well known to be a risk factor for colon cancer. Previously we established a novel mouse model of inflammation-related colon carcinogenesis, which is useful to examine the involvement of inflammation in colon carcinogenesis. To shed light on the alterations in global gene expression in the background of inflammation-related colon cancer and gain further insights into the molecular mechanisms underlying inflammation-related colon carcinogenesis, we conducted a comprehensive DNA microarray analysis using our model.</p> <p>Methods</p> <p>Male ICR mice were given a single ip injection of azoxymethane (AOM, 10 mg/kg body weight), followed by the addition of 2% (w/v) dextran sodium sulfate (DSS) to their drinking water for 7 days, starting 1 week after the AOM injection. We performed DNA microarray analysis (Affymetrix GeneChip) on non-tumorous mucosa obtained from mice that received AOM/DSS, AOM alone, and DSS alone, and untreated mice at wks 5 and 10.</p> <p>Results</p> <p>Markedly up-regulated genes in the colonic mucosa given AOM/DSS at wk 5 or 10 included Wnt inhibitory factor 1 (<it>Wif1</it>, 48.5-fold increase at wk 5 and 5.7-fold increase at wk 10) and plasminogen activator, tissue (<it>Plat</it>, 48.5-fold increase at wk 5), myelocytomatosis oncogene (<it>Myc</it>, 3.0-fold increase at wk 5), and phospholipase A2, group IIA (platelets, synovial fluid) (<it>Plscr2</it>, 8.0-fold increase at wk 10). The notable down-regulated genes in the colonic mucosa of mice treated with AOM/DSS were the peroxisome proliferator activated receptor binding protein (<it>Pparbp</it>, 0.06-fold decrease at wk 10) and the transforming growth factor, beta 3 (<it>Tgfb3</it>, 0.14-fold decrease at wk 10). The inflammation-related gene, peroxisome proliferator activated receptor γ (<it>Pparγ </it>0.38-fold decrease at wk 5), was also down-regulated in the colonic mucosa of mice that received AOM/DSS.</p> <p>Conclusion</p> <p>This is the first report describing global gene expression analysis of an AOM/DSS-induced mouse colon carcinogenesis model, and our findings provide new insights into the mechanisms of inflammation-related colon carcinogenesis and the establishment of novel therapies and preventative strategies against carcinogenesis.</p

    Bone marrow stromal cells attenuate sepsis via prostaglandin E2— dependent reprogramming of host macrophages to increase their interleukin-10 production

    Get PDF
    Sepsis causes over 200,000 deaths yearly in the US; better treatments are urgently needed. Administering bone marrow stromal cells (BMSCs—also known as mesenchymal stem cells) to mice before or shortly after inducing sepsis by cecal ligation and puncture reduced mortality and improved organ function. The beneficial effect of BMSCs was eliminated by macrophage depletion or pretreatment with antibodies specific for interleukin-10 (IL-10) or IL-10 receptor. Monocytes and/ or macrophages from septic lungs made more IL-10 when prepared from mice treated with BMSCs versus untreated mice. Lipopolysaccharide (LPS)-stimulated macrophages produced more IL-10 when cultured with BMSCs, but this effect was eliminated if the BMSCs lacked the genes encoding Toll-like receptor 4, myeloid differentiation primary response gene-88, tumor necrosis factor (TNF) receptor-1a or cyclooxygenase-2. Our results suggest that BMSCs (activated by LPS or TNF-α) reprogram macrophages by releasing prostaglandin E2 that acts on the macrophages through the prostaglandin EP2 and EP4 receptors. Because BMSCs have been successfully given to humans and can easily be cultured and might be used without human leukocyte antigen matching, we suggest that cultured, banked human BMSCs may be effective in treating sepsis in high-risk patient groups.Sepsis, a serious medical condition that affects 18 million people per year worldwide, is characterized by a generalized inflammatory state caused by infection. Widespread activation of inflammation and coagulation pathways progresses to multiple organ dysfunction, collapse of the circulatory system (septic shock) and death. Because as many people die of sepsis annually as from acute myocardial infarction1, a new treatment regimen is desperately needed. In the last few years, it has been discovered that BMSCs are potent modulators of immune responses2-5. We wondered whether such cells could bring the immune response back into balance, thus attenuating the underlying pathophysiology that eventually leads to severe sepsis, septic shock and death6,7. As a model of sepsis, we chose cecal ligation and puncture (CLP), a procedure that has been used for more than two decades8. This mouse model closely resembles the human disease: it has a focal origin (cecum), is caused by multiple intestinal organisms, and results in septicemia with release of bacterial toxins into the circulation. With no treatment, the majority of the mice die 24-48 h postoperatively. Originally published Nature Medicine, Vol. 15, No. 1, Jan 200

    Liver Is Able to Activate Naïve CD8+ T Cells with Dysfunctional Anti-Viral Activity in the Murine System

    Get PDF
    The liver possesses distinct tolerogenic properties because of continuous exposure to bacterial constituents and nonpathogenic food antigen. The central immune mediators required for the generation of effective immune responses in the liver environment have not been fully elucidated. In this report, we demonstrate that the liver can indeed support effector CD8+ T cells during adenovirus infection when the T cells are primed in secondary lymphoid tissues. In contrast, when viral antigen is delivered predominantly to the liver via intravenous (IV) adenovirus infection, intrahepatic CD8+ T cells are significantly impaired in their ability to produce inflammatory cytokines and lyse target cells. Additionally, intrahepatic CD8+ T cells generated during IV adenovirus infection express elevated levels of PD-1. Notably, lower doses of adenovirus infection do not rescue the impaired effector function of intrahepatic CD8+ T cell responses. Instead, intrahepatic antigen recognition limits the generation of potent anti-viral responses at both priming and effector stages of the CD8+ T cell response and accounts for the dysfunctional CD8+ T cell response observed during IV adenovirus infection. These results also implicate that manipulation of antigen delivery will facilitate the design of improved vaccination strategies to persistent viral infection

    The Haploinsufficient Hematopoietic Microenvironment Is Critical to the Pathological Fracture Repair in Murine Models of Neurofibromatosis Type 1

    Get PDF
    Germline mutations in the NF1 tumor suppressor gene cause neurofibromatosis type 1 (NF1), a complex genetic disorder with a high predisposition of numerous skeletal dysplasias including short stature, osteoporosis, kyphoscoliosis, and fracture non-union (pseudoarthrosis). We have developed murine models that phenocopy many of the skeletal dysplasias observed in NF1 patients, including reduced bone mass and fracture non-union. We also show that the development of these skeletal manifestations requires an Nf1 haploinsufficient background in addition to nullizygous loss of Nf1 in mesenchymal stem/progenitor cells (MSCs) and/or their progenies. This is replicated in two animal models of NF1, PeriCre+;Nf1flox/− and Col2.3Cre+;Nf1flox/−mice. Adoptive transfer experiments demonstrate a critical role of the Nf1+/− marrow microenvironment in the impaired fracture healing in both models and adoptive transfer of WT bone marrow cells improves fracture healing in these mice. To our knowledge, this is the first demonstration of a non-cell autonomous mechanism in non-malignant NF1 manifestations. Collectively, these data provide evidence of a combinatory effect between nullizygous loss of Nf1 in osteoblast progenitors and haploinsufficiency in hematopoietic cells in the development of non-malignant NF1 manifestations

    Proteinase Activated Receptor 1 Mediated Fibrosis in a Mouse Model of Liver Injury: A Role for Bone Marrow Derived Macrophages

    Get PDF
    Published onlineJournal ArticleResearch Support, Non-U.S. Gov'tThis is the final version of the article. Available from Public Library of Science via the DOI in this record.Liver fibrosis results from the co-ordinated actions of myofibroblasts and macrophages, a proportion of which are of bone marrow origin. The functional effect of such bone marrow-derived cells on liver fibrosis is unclear. We examine whether changing bone marrow genotype can down-regulate the liver's fibrotic response to injury and investigate mechanisms involved. Proteinase activated receptor 1 (PAR1) is up-regulated in fibrotic liver disease in humans, and deficiency of PAR1 is associated with reduced liver fibrosis in rodent models. In this study, recipient mice received bone marrow transplantation from PAR1-deficient or wild-type donors prior to carbon tetrachloride-induced liver fibrosis. Bone marrow transplantation alone from PAR1-deficient mice was able to confer significant reductions in hepatic collagen content and activated myofibroblast expansion on wild-type recipients. This effect was associated with a decrease in hepatic scar-associated macrophages and a reduction in macrophage recruitment from the bone marrow. In vitro, PAR1 signalling on bone marrow-derived macrophages directly induced their chemotaxis but did not stimulate proliferation. These data suggest that the bone marrow can modulate the fibrotic response of the liver to recurrent injury. PAR1 signalling can contribute to this response by mechanisms that include the regulation of macrophage recruitment.Funding for YNK SJF came from the MRC Clinical Research Training Fellowship (G0500428), www.mrc.ac.uk. For CJS RCC: Wellcome Trust Programme Grant (071124), www.wellcome.ac.uk. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Oral Serum-Derived Bovine Immunoglobulin/Protein Isolate Has Immunomodulatory Effects on the Colon of Mice that Spontaneously Develop Colitis

    Get PDF
    Dietary immunoglobulin concentrates prepared from animal plasma can modulate the immune response of gut-associated lymphoid tissue (GALT). Previous studies have revealed that supplementation with serum-derived bovine immunoglobulin/protein isolate (SBI) ameliorates colonic barrier alterations in the mdr1a-/- genetic mouse model of IBD. Here, we examine the effects of SBI on mucosal inflammation in mdr1a-/- mice that spontaneously develop colitis. Wild type (WT) mice and mice lacking the mdr1a gene (KO) were fed diets supplemented with either SBI (2% w/w) or milk proteins (Control diet), from day 21 (weaning) until day 56. Leucocytes in mesenteric lymph nodes (MLN) and in lamina propria were determined, as was mucosal cytokine production. Neutrophil recruitment and activation in MLN and lamina propria of KO mice were increased, but were significantly reduced in both by SBI supplementation (p < 0.05). The increased neutrophil recruitment and activation observed in KO mice correlated with increased colon oxidative stress (p < 0.05) and SBI supplementation reduced this variable (p < 0.05). The Tact/Treg lymphocyte ratios in MLN and lamina propria were also increased in KO animals, but SBI prevented these changes (both p < 0.05). In the colon of KO mice, there was an increased production of mucosal proinflammatory cytokines such as IL-2 (2-fold), IL-6 (26-fold) and IL-17 (19-fold), and of chemokines MIP-1β (4.5-fold) and MCP-1 (7.2-fold). These effects were significantly prevented by SBI (p < 0.05). SBI also significantly increased TGF-β secretion in the colon mucosa, suggesting a role of this anti-inflammatory cytokine in the modulation of GALT and the reduction of the severity of the inflammatory response during the onset of colitis
    corecore