1,598 research outputs found

    Assessment of backwater controls on the architecture of distributary channel fills in a tide-influenced coastal-plain succession: Campanian Neslen Formation, USA

    Get PDF
    The backwater zone of a river is its distal reach downstream of the point at which the streambed elevation reaches sea level. Backwater hydraulics is believed to exert an important control on fluvio-deltaic morphodynamics, but the expressions with which this may be recorded in the preserved stratigraphic record are not well understood. The seaward reaches of modern rivers can undergo flow acceleration and become erosional at high discharges due to drawdown of the in-channel water surface near the river mouth, in relation to the fixed water surface at the shoreline. As coastal-plain distributary channels approach the shoreline they tend to be subject to a reduction in lateral mobility, which could be related to diminished sediment flux at low flow. Current understanding of channel morphodynamics associated with backwater effects, as based on observations from numerical models and modern sedimentary systems, is here used to make predictions concerning the architecture of coastal distributary channel fills in the rock record. On the basis of existing knowledge, distributary channel fills are predicted to be typically characterized by low width-to-thickness aspect ratios, by a clustering of scour surfaces toward their base, by an aggradational infill style, by a facies organization that bears evidence of drawdown-influenced scour filling, possibly resulting in the overprint of tidal signals toward their base, and by co-genetic sand-prone overbank units of limited occurrence, thickness and sand content. To test these predictions, fieldwork was carried out to examine sedimentological characters of channel bodies from an interval of the Campanian Neslen Formation (eastern Utah, USA), which comprises a succession of sandstone, carbonaceous mudstone, and coal, deposited in a coastal-plain setting, and in which significant evidence of tidal influence is preserved. Three types of channel bodies are recognized in the studied interval, in terms of lithology and formative-channel morphodynamics: sand-prone laterally accreting channel elements, heterolithic laterally accreting channel elements and sand-prone aggradational ribbon channel elements. This study concentrates on the ribbon channel bodies since they possess a geometry compatible with laterally stable distributaries developed in the zone of drawdown. Sedimentological and architectural characteristics of these bodies are analyzed and compared with the proposed model of distributary channel-fill architecture. Although conclusive evidence of the influence of backwater processes in controlling the facies architecture of distributary channel fills is not reached, the studied bodies display an ensemble of internal architecture, lithological organization, nature of bounding surfaces and relationships with other units that conforms to the proposed model to a certain extent. The analyzed ribbon sandbodies are all characterized by erosional cut-banks, very limited proportions of mudstone deposits, a lack of genetically related barform units, clustering of scour fills at their base, and a lack of relationships with co-genetic river-fed overbank sandstones. This work provides a guide to future research, which is required to better understand the role of backwater processes in controlling the architecture of distributary channel bodies, their down-dip variations, and how these are expressed in the stratigraphic evolution of prograding coastal plains

    Response of a Coal-Bearing Coastal Plain Succession to Marine Transgression: Campanian Neslen Formation, Utah, USA

    Get PDF
    The process regime of low-gradient coastal plains, delta plains and shorelines can change during transgression. In ancient successions, accurate assessment of the nature of marine influence is needed to produce detailed paleogeographic reconstructions, and to better predict lithological heterogeneity in hydrocarbon reservoirs. The Campanian lower Neslen Formation represents a fluvial-dominated and tide- and wave-influenced coastal-plain and delta-plain succession that accumulated along the margins of the Western Interior Seaway, USA. The succession records the interactions of multiple coeval sedimentary environments that accumulated during a period of relative sea-level rise. A high-resolution data set based on closely spaced study sites employs vertical sedimentary graphical logs and stratigraphic panels for the recognition and correlation of a series of stratal packages. Each package represents the deposits of different paleoenvironments and process regimes within the context of an established regional sequence stratigraphic framework. Down-dip variations in the occurrence of architectural elements within each package demonstrate increasing marine influence as part of the fluvial-to-marine- transition zone. Three marine-influenced packages are recognized. These exhibit evidence for an increase in the intensity of marine processes upwards as part of an overall transgression through the lower Neslen Formation. These marine-influenced packages likely correlate down-dip to flooding surfaces within the time-equivalent Îles Formation. The stratigraphic arrangement of these packages is attributed to minor rises in sea level, the effects of which were initially buffered by the presence of raised peat mires. Post-depositional auto-compaction of these mires resulted in marine incursion over broad areas of the coastal plain. Results demonstrate that autogenic processes modified the process response to overall rise in relative sea level through time. Understanding the complicated interplay of processes in low-gradient, coal-bearing, paralic settings requires analysis of high-resolution stratigraphic data to discern the relative role of autogenic and allogenic controls

    Polymorphism in TGFB1 is associated with worse non-relapse mortality and overall survival after stem cell transplantation with unrelated donors.

    Get PDF
    Transforming growth factor beta-1, encoded by the TGFB1 gene, is a cytokine that plays a central role in many physiological and pathogenic processes. We have sequenced TGFB1 regulatory region and assigned allelic genotypes in a large cohort of hematopoietic stem cell transplantation patients and donors. In this study, we analyzed 522 unrelated donor-patient pairs and examined the combined effect of all the common polymorphisms in this genomic region. In univariate analysis, we found that patients carrying a specific allele, 'p001', showed significantly reduced overall survival (5-year overall survival 30.7% for p001/ p001 patients vs. 41.6% others; P=0.032) and increased non-relapse mortality (1-year nonrelapse mortality: 39.0% vs. 25.4%; P=0.039) after transplantation. In multivariate analysis, the presence of a p001/ p001 genotype in patients was confirmed as an independent factor for reduced overall survival [hazard ratio=1.53 (1.04-2.24); P=0.031], and increased non-relapse mortality [hazard ratio=1.73 (1.06-2.83); P=0.030]. In functional experiments we found a trend towards a higher percentage of surface transforming growth factor beta-1-positive regulatory T cells after activation when the cells had a p001 allele (P=0.07). Higher or lower production of transforming growth factor beta-1 in the inflammatory context of hematopoietic stem cell transplantation may influence the development of complications in these patients. Findings indicate that TGFB1 genotype could potentially be of use as a prognostic factor in hematopoietic stem cell transplantation risk assessment algorithms

    First-Line Treatment of Mantle-Cell Lymphoma: Analysis of Effectiveness and Cost-Effectiveness

    Get PDF
    Aim. To study the correlation between efficacy of mantle-cell lymphoma treatment in clinical practice and failure of first-line therapy and direct expenses depending on the first-line therapy selection. Methods. During the period from 2008 to 2016 a comparative single-center controlled trial was performed to evaluate the effectiveness and toxicity of R-hyper-CVAD-R-HD-AraC (n = 16) regimen. The control group included patients treated with 6–8 cycles of R-CHOP (n = 39). Cytarabine dose was lower than the original regimen and contained not more than 1 g/m2 twice a day for 2 days. R-hyper-CVAD regimen included the standard drug doses. R-HD-AraC treatment started on day 28 from the beginning of the R-hyper-CVAD therapy. The R-hyper-CVAD-R-HD-AraC group consisted of patients with the following characteristics: the median age was 56 years (range 40–66), older than 60 — 6 (38 %), male patients — 12 (75 %), stage IV — 12 (75 %), bulky — 7 (44 %), with bone marrow involved — 11 (69 %), MIPIb high-risk — 8 (50 %), blastoid variant — 7 (44 %). Only 2 patients of the R-hyper-CVAD-R-HD-AraC group received high-dose consolidation treatment with autologous HSC transplantation. HSCT was not performed in the control group. The results of comparative analysis were adjusted to age. In terms of the other significant factors the groups under comparison were similar. Results. All the patients of the study group were treated with 3 R-hyper-CVAD and 3 R-HD-AraC regimens. The rate of complete remission was significantly higher than in the control group —12 (75 %) vs. 14 (36 %). No differences were observed in the 5-year overall survival: 55 % in the R-hyper-CVAD-R-HD-AraC group and 58 % in the R-CHOP group (p = 0.75). Second-line therapy was received by 8 out of 15 (47 %) patients treated with R-hyper-CVAD-R-HD-AraC, and by 18 out of 23 (78 %) patients treated with R-CHOP. Median time before second-line therapy was significantly higher in the R-hyper-CVAD-R-HD-AraC group — 26 vs. 6 months (p = 0.018). The costs of the first and subsequent therapy lines were analysed using a Markov model. Cost analysis of first-line therapy variants to be compared was based on cost-effectiveness ratio (CER) and incremental cost-effectiveness ratio (ICER). The analysis proved the cost-effectiveness of R-hyper-CVAD-R-HD-AraC program. Conclusion. R-hyper-CVAD-R-HD-AraC program meets eligibility criteria for effectiveness, toxicity and cost-effectiveness and can, therefore, be recommended as first-line therapy of mantle-cell lymphoma and be used for the further comparative clinical trials

    Multi-centre reproducibility of diffusion MRI parameters for clinical sequences in the brain.

    Get PDF
    The purpose of this work was to assess the reproducibility of diffusion imaging, and in particular the apparent diffusion coefficient (ADC), intra-voxel incoherent motion (IVIM) parameters and diffusion tensor imaging (DTI) parameters, across multiple centres using clinically available protocols with limited harmonization between sequences. An ice-water phantom and nine healthy volunteers were scanned across fives centres on eight scanners (four Siemens 1.5T, four Philips 3T). The mean ADC, IVIM parameters (diffusion coefficient D and perfusion fraction f) and DTI parameters (mean diffusivity MD and fractional anisotropy FA), were measured in grey matter, white matter and specific brain sub-regions. A mixed effect model was used to measure the intra- and inter-scanner coefficient of variation (CV) for each of the five parameters. ADC, D, MD and FA had a good intra- and inter-scanner reproducibility in both grey and white matter, with a CV ranging between 1% and 7.4%; mean 2.6%. Other brain regions also showed high levels of reproducibility except for small structures such as the choroid plexus. The IVIM parameter f had a higher intra-scanner CV of 8.4% and inter-scanner CV of 24.8%. No major difference in the inter-scanner CV for ADC, D, MD and FA was observed when analysing the 1.5T and 3T scanners separately. ADC, D, MD and FA all showed good intra-scanner reproducibility, with the inter-scanner reproducibility being comparable or faring slightly worse, suggesting that using data from multiple scanners does not have an adverse effect compared with using data from the same scanner. The IVIM parameter f had a poorer inter-scanner CV when scanners of different field strengths were combined, and the parameter was also affected by the scan acquisition resolution. This study shows that the majority of diffusion MRI derived parameters are robust across 1.5T and 3T scanners and suitable for use in multi-centre clinical studies and trials

    Feasibility of intensity-modulated and image-guided radiotherapy for locally advanced esophageal cancer

    Get PDF
    BACKGROUND:In this study the feasibility of intensity-modulated radiotherapy (IMRT) and tomotherapy-based image-guided radiotherapy (IGRT) for locally advanced esophageal cancer was assessed.METHODS:A retrospective study of ten patients with locally advanced esophageal cancer who underwent concurrent chemotherapy with IMRT (1) and IGRT (9) was conducted. The gross tumor volume was treated to a median dose of 70Gy (62.4-75Gy).RESULTS:At a median follow-up of 14months (1-39 months), three patients developed local failures, six patients developed distant metastases, and complications occurred in two patients (1 tracheoesophageal fistula, 1 esophageal stricture requiring repeated dilatations). No patients developed grade 3-4 pneumonitis or cardiac complications.CONCLUSIONS:IMRT and IGRT may be effective for the treatment of locally advanced esophageal cancer with acceptable complications.This item is part of the UA Faculty Publications collection. For more information this item or other items in the UA Campus Repository, contact the University of Arizona Libraries at [email protected]
    corecore