81 research outputs found

    Kinetics of the urea–urease clock reaction with urease immobilized in hydrogel beads

    Get PDF
    Feedback driven by enzyme catalyzed reactions occurs widely in biology and has been well characterized in single celled organisms such as yeast. There are still few examples of robust enzyme oscillators in vitro that might be used to study nonlinear dynamical behavior. One of the simplest is the urea–urease reaction that displays autocatalysis driven by the increase in pH accompanying the production of ammonia. A clock reaction was obtained from low to high pH in batch reactor and bistability and oscillations were reported in a continuous flow rector. However, the oscillations were found to be irreproducible and one contributing factor may be the lack of stability of the enzyme in solution at room temperature. Here, we investigated the effect of immobilizing urease in thiol-poly(ethylene glycol) acrylate (PEGDA) hydrogel beads, prepared using emulsion polymerization, on the urea–urease reaction. The resultant mm-sized beads were found to reproduce the pH clock and, under the conditions employed here, the stability of the enzyme was increased from hours to days

    Growth-Rate Dependence Reveals Design Principles of Plasmid Copy Number Control

    Get PDF
    Genetic circuits in bacteria are intimately coupled to the cellular growth rate as many parameters of gene expression are growth-rate dependent. Growth-rate dependence can be particularly pronounced for genes on plasmids; therefore the native regulatory systems of a plasmid such as its replication control system are characterized by growth-rate dependent parameters and regulator concentrations. This natural growth-rate dependent variation of regulator concentrations can be used for a quantitative analysis of the design of such regulatory systems. Here we analyze the growth-rate dependence of parameters of the copy number control system of ColE1-type plasmids in E. coli. This analysis allows us to infer the form of the control function and suggests that the Rom protein increases the sensitivity of control

    Suicide among Arab-Americans

    Get PDF
    BACKGROUND: Arab-American (AA) populations in the US are exposed to discrimination and acculturative stress-two factors that have been associated with higher suicide risk. However, prior work suggests that socially oriented norms and behaviors, which characterize recent immigrant ethnic groups, may be protective against suicide risk. Here we explored suicide rates and their determinants among AAs in Michigan, the state with the largest proportion of AAs in the US. METHODOLOGY/PRINCIPAL FINDINGS: ICD-9/10 underlying cause of death codes were used to identify suicide deaths from among all deaths in Michigan between 1990 and 2007. Data from the 2000 U.S. Census were collected for population denominators. Age-adjusted suicide rates among AAs and non-ethnic whites were calculated by gender using the direct method of standardization. We also stratified by residence inside or outside of Wayne County (WC), the county with the largest AA population in the state. Suicide rates were 25.10 per 100,000 per year among men and 6.40 per 100,000 per year among women in Michigan from 1990 to 2007. AA men had a 51% lower suicide rate and AA women had a 33% lower rate than non-ethnic white men and women, respectively. The suicide rate among AA men in WC was 29% lower than in all other counties, while the rate among AA women in WC was 20% lower than in all other counties. Among non-ethnic whites, the suicide rate in WC was higher compared to all other counties among both men (12%) and women (16%). CONCLUSIONS/SIGNIFICANCE: Suicide rates were higher among non-ethnic white men and women compared to AA men and women in both contexts. Arab ethnicity may protect against suicide in both sexes, but more so among men. Additionally, ethnic density may protect against suicide among Arab-Americans

    Human native lipoprotein-induced de novo DNA methylation is associated with repression of inflammatory genes in THP-1 macrophages

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We previously showed that a VLDL- and LDL-rich mix of human native lipoproteins induces a set of repressive epigenetic marks, <it>i.e. de novo </it>DNA methylation, histone 4 hypoacetylation and histone 4 lysine 20 (H4K20) hypermethylation in THP-1 macrophages. Here, we: 1) ask what gene expression changes accompany these epigenetic responses; 2) test the involvement of candidate factors mediating the latter. We exploited genome expression arrays to identify target genes for lipoprotein-induced silencing, in addition to RNAi and expression studies to test the involvement of candidate mediating factors. The study was conducted in human THP-1 macrophages.</p> <p>Results</p> <p>Native lipoprotein-induced <it>de novo </it>DNA methylation was associated with a general repression of various critical genes for macrophage function, including pro-inflammatory genes. Lipoproteins showed differential effects on epigenetic marks, as <it>de novo </it>DNA methylation was induced by VLDL and to a lesser extent by LDL, but not by HDL, and VLDL induced H4K20 hypermethylation, while HDL caused H4 deacetylation. The analysis of candidate factors mediating VLDL-induced DNA hypermethylation revealed that this response was: 1) surprisingly, mediated exclusively by the canonical maintenance DNA methyltransferase DNMT1, and 2) independent of the Dicer/micro-RNA pathway.</p> <p>Conclusions</p> <p>Our work provides novel insights into epigenetic gene regulation by native lipoproteins. Furthermore, we provide an example of DNMT1 acting as a <it>de novo </it>DNA methyltransferase independently of canonical <it>de novo </it>enzymes, and show proof of principle that <it>de novo </it>DNA methylation can occur independently of a functional Dicer/micro-RNA pathway in mammals.</p

    Zoledronic acid renders human M1 and M2 macrophages susceptible to Vδ2(+) γδ T cell cytotoxicity in a perforin-dependent manner.

    Get PDF
    Vδ2(+) T cells are a subpopulation of γδ T cells in humans that are cytotoxic towards cells which accumulate isopentenyl pyrophosphate. The nitrogen-containing bisphosphonate, zoledronic acid (ZA), can induce tumour cell lines to accumulate isopentenyl pyrophosphate, thus rendering them more susceptible to Vδ2(+) T cell cytotoxicity. However, little is known about whether ZA renders other, non-malignant cell types susceptible. In this study we focussed on macrophages (Mϕs), as these cells have been shown to take up ZA. We differentiated peripheral blood monocytes from healthy donors into Mϕs and then treated them with IFN-γ or IL-4 to generate M1 and M2 Mϕs, respectively. We characterised these Mϕs based on their phenotype and cytokine production and then tested whether ZA rendered them susceptible to Vδ2(+) T cell cytotoxicity. Consistent with the literature, IFN-γ-treated Mϕs expressed higher levels of the M1 markers CD64 and IL-12p70, whereas IL-4-treated Mϕs expressed higher levels of the M2 markers CD206 and chemokine (C-C motif) ligand 18. When treated with ZA, both M1 and M2 Mϕs became susceptible to Vδ2(+) T cell cytotoxicity. Vδ2(+) T cells expressed perforin and degranulated in response to ZA-treated Mϕs as shown by mobilisation of CD107a and CD107b to the cell surface. Furthermore, cytotoxicity towards ZA-treated Mϕs was sensitive-at least in part-to the perforin inhibitor concanamycin A. These findings suggest that ZA can render M1 and M2 Mϕs susceptible to Vδ2(+) T cell cytotoxicity in a perforin-dependent manner, which has important implications regarding the use of ZA in cancer immunotherapy

    Improving eye care for veterans with diabetes: An example of using the QUERI steps to move from evidence to implementation: QUERI Series

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite being a critical part of improving healthcare quality, little is known about how best to move important research findings into clinical practice. To address this issue, the Department of Veterans Affairs (VA) developed the Quality Enhancement Research Initiative (QUERI), which provides a framework, a supportive structure, and resources to promote the more rapid implementation of evidence into practice.</p> <p>Methods</p> <p>This paper uses a practical example to demonstrate the use of the six-step QUERI process, which was developed as part of QUERI and provides a systematic approach for moving along the research to practice pipeline. Specifically, we describe a series of projects using the six-step framework to illustrate how this process guided work by the Diabetes Mellitus QUERI (DM-QUERI) Center to assess and improve eye care for veterans with diabetes.</p> <p>Results</p> <p>Within a relatively short time, DM-QUERI identified a high-priority issue, developed evidence to support a change in the diabetes eye screening performance measure, and identified a gap in quality of care. A prototype scheduling system to address gaps in screening and follow-up also was tested as part of an implementation project. We did not succeed in developing a fully functional pro-active scheduling system. This work did, however, provide important information to help us further understand patients' risk status, gaps in follow-up at participating eye clinics, specific considerations for additional implementation work in the area of proactive scheduling, and contributed to a change in the prevailing diabetes eye care performance measure.</p> <p>Conclusion</p> <p>Work by DM-QUERI to promote changes in the delivery of eye care services for veterans with diabetes demonstrates the value of the QUERI process in facilitating the more rapid implementation of evidence into practice. However, our experience with using the QUERI process also highlights certain challenges, including those related to the hybrid nature of the research-operations partnership as a mechanism for promoting rapid, system-wide implementation of important research findings. In addition, this paper suggests a number of important considerations for future implementation work, both in the area of pro-active scheduling interventions, as well as for implementation science in general.</p

    Transcription regulation of the Escherichia coli pcnB gene coding for poly(A) polymerase I: roles of ppGpp, DksA and sigma factors

    Get PDF
    Poly(A) polymerase I (PAP I), encoded by the pcnB gene, is a major enzyme responsible for RNA polyadenylation in Escherichia coli, a process involved in the global control of gene expression in this bacterium through influencing the rate of transcript degradation. Recent studies have suggested a complicated regulation of pcnB expression, including a complex promoter region, a control at the level of translation initiation and dependence on bacterial growth rate. In this report, studies on transcription regulation of the pcnB gene are described. Results of in vivo and in vitro experiments indicated that (a) there are three σ70-dependent (p1, pB, and p2) and two σS-dependent (pS1 and pS2) promoters of the pcnB gene, (b) guanosine tetraphosphate (ppGpp) and DksA directly inhibit transcription from pB, pS1 and pS2, and (c) pB activity is drastically impaired at the stationary phase of growth. These results indicate that regulation of the pcnB gene transcription is a complex process, which involves several factors acting to ensure precise control of PAP I production. Moreover, inhibition of activities of pS1 and pS2 by ppGpp and DksA suggests that regulation of transcription from promoters requiring alternative σ factors by these effectors of the stringent response might occur according to both passive and active models

    Mapping the Complex Morphology of Cell Interactions with Nanowire Substrates Using FIB-SEM

    Get PDF
    Using high resolution focused ion beam scanning electron microscopy (FIB-SEM) we study the details of cell-nanostructure interactions using serial block face imaging. 3T3 Fibroblast cellular monolayers are cultured on flat glass as a control surface and on two types of nanostructured scaffold substrates made from silicon black (Nanograss) with low- and high nanowire density. After culturing for 72 hours the cells were fixed, heavy metal stained, embedded in resin, and processed with FIB-SEM block face imaging without removing the substrate. The sample preparation procedure, image acquisition and image post-processing were specifically optimised for cellular monolayers cultured on nanostructured substrates. Cells display a wide range of interactions with the nanostructures depending on the surface morphology, but also greatly varying from one cell to another on the same substrate, illustrating a wide phenotypic variability. Depending on the substrate and cell, we observe that cells could for instance: break the nanowires and engulf them, flatten the nanowires or simply reside on top of them. Given the complexity of interactions, we have categorised our observations and created an overview map. The results demonstrate that detailed nanoscale resolution images are required to begin understanding the wide variety of individual cells' interactions with a structured substrate. The map will provide a framework for light microscopy studies of such interactions indicating what modes of interactions must be considered

    Ethnic Inequalities in Mortality: The Case of Arab-Americans

    Get PDF
    BACKGROUND: Although nearly 112 million residents of the United States belong to a non-white ethnic group, the literature about differences in health indicators across ethnic groups is limited almost exclusively to Hispanics. Features of the social experience of many ethnic groups including immigration, discrimination, and acculturation may plausibly influence mortality risk. We explored life expectancy and age-adjusted mortality risk of Arab-Americans (AAs), relative to non-Arab and non-Hispanic Whites in Michigan, the state with the largest per capita population of AAs in the US. METHODOLOGY/PRINCIPAL FINDINGS: Data were collected about all deaths to AAs and non-Arab and non-Hispanic Whites in Michigan between 1990 and 2007, and year 2000 census data were collected for population denominators. We calculated life expectancy, age-adjusted all-cause, cause-specific, and age-specific mortality rates stratified by ethnicity and gender among AAs and non-Arab and non-Hispanic Whites. Among AAs, life expectancies among men and women were 2.0 and 1.4 years lower than among non-Arab and non-Hispanic White men and women, respectively. AA men had higher mortality than non-Arab and non-Hispanic White men due to infectious diseases, chronic diseases, and homicide. AA women had higher mortality than non-Arab and non-Hispanic White women due to chronic diseases. CONCLUSIONS/SIGNIFICANCE: Despite better education and higher income, AAs have higher age-adjusted mortality risk than non-Arab and non-Hispanic Whites, particularly due to chronic diseases. Features specific to AA culture may explain some of these findings

    Cancer Cell Invasion Is Enhanced by Applied Mechanical Stimulation

    Get PDF
    Metastatic cells migrate from the site of the primary tumor, through the stroma, into the blood and lymphatic vessels, finally colonizing various other tissues to form secondary tumors. Numerous studies have been done to identify the stimuli that drive the metastatic cascade. This has led to the identification of multiple biochemical signals that promote metastasis. However, information on the role of mechanical factors in cancer metastasis has been limited to the affect of compliance. Interestingly, the tumor microenvironment is rich in many cell types including highly contractile cells that are responsible for extensive remodeling and production of the dense extracellular matrix surrounding the cancerous tissue. We hypothesize that the mechanical forces produced by remodeling activities of cells in the tumor microenvironment contribute to the invasion efficiency of metastatic cells. We have discovered a significant difference in the extent of invasion in mechanically stimulated verses non-stimulated cell culture environments. Furthermore, this mechanically enhanced invasion is dependent upon substrate protein composition, and influenced by topography. Finally, we have found that the protein cofilin is needed to sense the mechanical stimuli that enhances invasion. We conclude that other types of mechanical signals in the tumor microenvironment, besides the rigidity, can enhance the invasive abilities of cancer cells in vitro. We further propose that in vivo, non-cancerous cells located within the tumor micro-environment may be capable of providing the necessary mechanical stimulus during the remodeling of the extracellular matrix surrounding the tumor
    corecore