24 research outputs found

    Rapid motion adaptation reveals the temporal dynamics of spatiotemporal correlation between ON and OFF pathways

    Get PDF
    At the early stages of visual processing, information is processed by two major thalamic pathways encoding brightness increments (ON) and decrements (OFF). Accumulating evidence suggests that these pathways interact and merge as early as in primary visual cortex. Using regular and reverse-phi motion in a rapid adaptation paradigm, we investigated the temporal dynamics of within and across pathway mechanisms for motion processing. When the adaptation duration was short (188 ms), reverse-phi and regular motion led to similar adaptation effects, suggesting that the information from the two pathways are combined efficiently at early-stages of motion processing. However, as the adaption duration was increased to 752 ms, reverse-phi and regular motion showed distinct adaptation effects depending on the test pattern used, either engaging spatiotemporal correlation between the same or opposite contrast polarities. Overall, these findings indicate that spatiotemporal correlation within and across ON-OFF pathways for motion processing can be selectively adapted, and support those models that integrate within and across pathway mechanisms for motion processing

    Increased Sensitivity to Mirror Symmetry in Autism

    Get PDF
    Can autistic people see the forest for the trees? Ongoing uncertainty about the integrity and role of global processing in autism gives special importance to the question of how autistic individuals group local stimulus attributes into meaningful spatial patterns. We investigated visual grouping in autism by measuring sensitivity to mirror symmetry, a highly-salient perceptual image attribute preceding object recognition. Autistic and non-autistic individuals were asked to detect mirror symmetry oriented along vertical, oblique, and horizontal axes. Both groups performed best when the axis was vertical, but across all randomly-presented axis orientations, autistics were significantly more sensitive to symmetry than non-autistics. We suggest that under some circumstances, autistic individuals can take advantage of parallel access to local and global information. In other words, autistics may sometimes see the forest and the trees, and may therefore extract from noisy environments genuine regularities which elude non-autistic observers

    Aging and Visual Counting

    Get PDF
    Much previous work on how normal aging affects visual enumeration has been focused on the response time required to enumerate, with unlimited stimulus duration. There is a fundamental question, not yet addressed, of how many visual items the aging visual system can enumerate in a "single glance", without the confounding influence of eye movements.We recruited 104 observers with normal vision across the age span (age 21-85). They were briefly (200 ms) presented with a number of well- separated black dots against a gray background on a monitor screen, and were asked to judge the number of dots. By limiting the stimulus presentation time, we can determine the maximum number of visual items an observer can correctly enumerate at a criterion level of performance (counting threshold, defined as the number of visual items at which ≈63% correct rate on a psychometric curve), without confounding by eye movements. Our findings reveal a 30% decrease in the mean counting threshold of the oldest group (age 61-85: ∼5 dots) when compared with the youngest groups (age 21-40: 7 dots). Surprisingly, despite decreased counting threshold, on average counting accuracy function (defined as the mean number of dots reported for each number tested) is largely unaffected by age, reflecting that the threshold loss can be primarily attributed to increased random errors. We further expanded this interesting finding to show that both young and old adults tend to over-count small numbers, but older observers over-count more.Here we show that age reduces the ability to correctly enumerate in a glance, but the accuracy (veridicality), on average, remains unchanged with advancing age. Control experiments indicate that the degraded performance cannot be explained by optical, retinal or other perceptual factors, but is cortical in origin

    Motion analysis by feature tracking

    No full text
    We have developed a two-stage model of motion perception that identifies moving spatial features and computes their velocity, achieving both high spatial localisation and reliable estimates of velocity. Features are detected in each frame by locating the peaks of the spatial local energy functions, as for stationary images (Morrone MC and Burr DC. Proc R Soc Lend 1988;B235:221-245.). The energy functions are calculated for different scales and orientations, and integrated within a temporal Gaussian window. The velocity of features is determined by the direction of maximal elongation of the energy in space-time, evaluated by calculating the three characteristic curvatures of the energy at each feature point. To circumvent the aperture problem, the energy maps are blurred in space by various amounts. and velocity is computed separately for each spatial blur. The Weber fraction of the local curvatures (curvature contrast) describes the spatio-temporal energy elongation at each feature point, giving a reliability index for each velocity estimate. For each point, the velocity of the spatial blur that yielded the highest curvature contrast was selected, with no further constraints, such as rigidity of motion. Dynamic recruitment of operators of different size allows maximum flexibility of the analysis, allowing it to simulate human visual performance in the detection of noise images, transparent motion, some motion illusions, and second-order motion. (C) 1998 Elsevier Science Ltd. All rights reserved

    A feature-tracking model simulates the motion direction bias induced by phase congruency.

    No full text
    Here we report a new motion illusion where the prevailing motion direction is strongly influenced by the relative phase of the harmonic components of the stimulus. The basic stimulus is the sum of three sinusoidal contrast-reversing gratings: the first, the third, and the fifth harmonic of two square wave gratings that drift in opposite direction. The phase of one of the fifth components was kept constant at 180 deg, whereas the phase of the other fifth harmonic was varied over the range 0-150 deg. For each phase value of the fifth harmonic, the motion was strongly biased toward its direction, corresponding to the direction with stronger phase congruency between the three harmonics. The strength of the prevailing motion was assessed by measuring motion direction discrimination thresholds, by varying the contrast of the third and the fifth harmonics plaid pattern. Results show that the contrast of high harmonics had to be increased by more than a factor of 10, to achieve a balance of motion for phase differences greater than 60 deg between the 2 fifth harmonics. We also measured the dependence on the absolute phase of harmonic components and found that it is not an important parameter, excluding the possibility that local luminance cues could be mediating the effect. A feature-tracking model based on previous work is proposed to simulate the data. The model computes local energy function from a pair of space-time separable front stage filters and applies a battery of directional second stage mechanisms. It is able to simulate quantitatively the phase congruency dependence illusion and the insensitivity to overall phase. Other energy models based on directional filters fail to simulate the phase congruency dependency effect
    corecore