58 research outputs found

    Host range, symbiotic effectiveness and nodulation competitiveness of some indigenous cowpea bradyrhizobia isolates from the transitional savanna zone of Ghana

    Get PDF
    To identify indigenous rhizobia with potential as inoculants for increasing cowpea (Vigna unguiculata) yields, we have assessed the host range, symbiotic effectiveness and competitiveness for noduleoccupancy among five (AII-2-1, AII-5-2, AI-4-3, AII-3-4 and BIII-2-2) indigenous cowpea bradyrhizobia isolates from the transitional savanna zone of Ghana. ERIC-PCR DNA fingerprinting patterns were used to identify the isolates occupying nodules. All the isolates nodulated cowpea, groundnut (Arachis hypogeae) and mungbean (Vigna radiata), but only AII-2-1, AII-3-4 and BIII-2-2 nodulated soybean (Glycine max). Apart from cowpea where all the isolates were effective, there were significant differences in the symbiotic effectiveness of the isolates on the other host legumes. Out of a total of about 250 cowpea nodules that were screened for each inoculum-mix, isolate AII-5-2 was the most competitive for nodule occupancy whilst AII-3-4 was the least. Isolate AII-5-2 occupied 71% of the nodules in an inoculum-mix consisting of equal proportions of AII-2-1, AII-5-2 and AI-4-3 (a 3-isolatemix) and 60% of nodules in an inoculum-mix consisting of equal proportions of all the five isolates (a 5- isolate-mix). Therefore, among the isolates tested, AII-5-2 has the best potential for use as inoculant formaximizing cowpea yield in N2- deficient agro-ecological zones of Ghana

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Fluoride concentrations in the pineal gland, brain and bone of goosander (Mergus merganser) and its prey in Odra River estuary in Poland

    Get PDF

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Quantifying the impacts of defaunation on natural forest regeneration in a global meta-analysis

    Get PDF
    Intact forests provide diverse and irreplaceable ecosystem services that are critical to human well-being, such as carbon storage to mitigate climate change. However, the ecosystem functions that underpin these services are highly dependent on the woody vegetation-animal interactions occurring within forests. While vertebrate defaunation is of growing policy concern, the effects of vertebrate loss on natural forest regeneration have yet to be quantified globally. Here we conduct a meta-analysis to assess the direction and magnitude of defaunation impacts on forests. We demonstrate that real-world defaunation caused by hunting and habitat fragmentation leads to reduced forest regeneration, although manipulation experiments provide contrasting findings. The extirpation of primates and birds cause the greatest declines in forest regeneration, emphasising their key role in maintaining carbon stores, and the need for national and international climate change and conservation strategies to protect forests from defaunation fronts as well as deforestation fronts

    Influence of spatial and environmental variables on rattan palm (Arecaceae) assemblage composition in Central Sulawesi, Indonesia

    No full text
    Rattan palms are dominant elements of Southeast Asian rainforests and of high economic importance, yet little is known about the ecological factors determining the spatial distribution of species and assemblages. We studied rattan palm assemblages at two sites at different elevations in Lore Lindu National Park, Sulawesi, Indonesia (Pono: 958–1,266 m; Bariri: 1,390–1,507 m). At each site, we established a transect of 1.29 km consisting of 65 study plots of 10 × 10 m2 each, regularly spaced 20 m from each other. In total, we recorded 5,081 rattan individuals belonging to 22 species, with 1,367 individuals of 16 species at Pono and 3,714 individuals of 8 species at Bariri. Variance partitioning explained 29–49 % of community variation at Pono and 40–72 % at Bariri, with most variation jointly explained by spatial and environmental variables. Within the environmental influence, soil factors dominated over local topographical ones. RDA ordination allowed the discrimination of four species groups at Pono and three groups at Bariri. These groups were related to soil and less clearly to topographic variables. Our study is the first documentation of the importance of soil parameters in determining the spatial distribution of rattan palms. Interestingly, juvenile palms (1 m tall), calling for further studies on the demography of rattan palms
    corecore