7,759 research outputs found

    Anticarbamylated protein antibodies are associated with long-term disability and increased disease activity in patients with early inflammatory arthritis:Results from the Norfolk Arthritis Register

    Get PDF
    Objectives: Anticarbamylated protein (anti-CarP) antibodies are a novel family of autoantibodies recently identified in patients with inflammatory arthritis. The aim of this study was to investigate their association with long-term outcomes of disability and disease activity over 20 years’ follow-up in a cohort of patients with inflammatory polyarthritis (IP).  Methods: Norfolk Arthritis Register recruited adults with recent-onset swelling of ≥2 joints for ≥4 weeks from 1990 to 2009. At baseline, Health Assessment Questionnaire (HAQ) and 28 joint disease activity scores (DAS28) were obtained, and C reactive protein, rheumatoid factor (RF), anticitrullinated protein antibodies (ACPA) and anti-CarP antibodies were measured. Further HAQ scores and DAS28 were obtained at regular intervals over 20 years. Generalised estimating equations were used to test the association between anti-CarP antibody status and longitudinal HAQ and DAS28 scores; adjusting for age, gender, smoking status, year of inclusion and ACPA status. Analyses were repeated in subgroups stratified by ACPA status. The relative association of RF, ACPA and anti-CarP antibodies with HAQ and DAS28 scores was investigated using a random effects model.  Results: 1995 patients were included; 1310 (66%) were female. Anti-CarP antibodies were significantly associated with more disability and higher disease activity, HAQ multivariate β-coefficient (95% CI) 0.12 (0.02 to 0.21), and these associations remained significant in the ACPA-negative subgroups. The associations of RF, ACPA and anti-CarP antibodies were found to be additive in the random effects model.  Conclusions: Anti-CarP antibodies are associated with increased disability and higher disease activity in patients with IP. Our results suggest that measurement of anti-CarP antibodies may be useful in identifying ACPA-negative patients with worse long-term outcomes. Further, anti-CarP antibody status provided additional information about RF and ACPA

    Weakly- and Semi-Supervised Panoptic Segmentation

    Full text link
    We present a weakly supervised model that jointly performs both semantic- and instance-segmentation -- a particularly relevant problem given the substantial cost of obtaining pixel-perfect annotation for these tasks. In contrast to many popular instance segmentation approaches based on object detectors, our method does not predict any overlapping instances. Moreover, we are able to segment both "thing" and "stuff" classes, and thus explain all the pixels in the image. "Thing" classes are weakly-supervised with bounding boxes, and "stuff" with image-level tags. We obtain state-of-the-art results on Pascal VOC, for both full and weak supervision (which achieves about 95% of fully-supervised performance). Furthermore, we present the first weakly-supervised results on Cityscapes for both semantic- and instance-segmentation. Finally, we use our weakly supervised framework to analyse the relationship between annotation quality and predictive performance, which is of interest to dataset creators.Comment: ECCV 2018. The first two authors contributed equall

    Application of amino acid occurrence for discriminating different folding types of globular proteins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Predicting the three-dimensional structure of a protein from its amino acid sequence is a long-standing goal in computational/molecular biology. The discrimination of different structural classes and folding types are intermediate steps in protein structure prediction.</p> <p>Results</p> <p>In this work, we have proposed a method based on linear discriminant analysis (LDA) for discriminating 30 different folding types of globular proteins using amino acid occurrence. Our method was tested with a non-redundant set of 1612 proteins and it discriminated them with the accuracy of 38%, which is comparable to or better than other methods in the literature. A web server has been developed for discriminating the folding type of a query protein from its amino acid sequence and it is available at http://granular.com/PROLDA/.</p> <p>Conclusion</p> <p>Amino acid occurrence has been successfully used to discriminate different folding types of globular proteins. The discrimination accuracy obtained with amino acid occurrence is better than that obtained with amino acid composition and/or amino acid properties. In addition, the method is very fast to obtain the results.</p

    MARCKS mediates vascular contractility through regulating interactions between voltage-gated Ca2+ channels and PIP2.

    Get PDF
    Phosphatidylinositol 4,5-bisphosphate (PIP2) acts as substrate and unmodified ligand for Gq-protein-coupled receptor signalling in vascular smooth muscle cells (VSMCs) that is central for initiating contractility. The present work investigated how PIP2 might perform these two potentially conflicting roles by studying the effect of myristoylated alanine-rich C kinase substrate (MARCKS), a PIP2-binding protein, on vascular contractility in rat and mouse mesenteric arteries. Using wire myography, MANS peptide (MANS), a MARCKS inhibitor, produced robust contractions with a pharmacological profile suggesting a predominantly role for L-type (CaV1.2) voltage-gated Ca2+ channels (VGCC). Knockdown of MARCKS using morpholino oligonucleotides reduced contractions induced by MANS and stimulation of α1-adrenoceptors and thromboxane receptors with methoxamine (MO) and U46619 respectively. Immunocytochemistry and proximity ligation assays demonstrated that MARCKS and CaV1.2 proteins co-localise at the plasma membrane in unstimulated tissue, and that MANS and MO reduced these interactions and induced translocation of MARCKS from the plasma membrane to the cytosol. Dot-blots revealed greater PIP2 binding to MARCKS than CaV1.2 in unstimulated tissue, with this binding profile reversed following stimulation by MANS and MO. MANS evoked an increase in peak amplitude and shifted the activation curve to more negative membrane potentials of whole-cell voltage-gated Ca2+ currents, which were prevented by depleting PIP2 levels with wortmannin. This present study indicates for the first time that MARCKS is important regulating vascular contractility and suggests that disinhibition of MARCKS by MANS or vasoconstrictors may induce contraction through releasing PIP2 into the local environment where it increases voltage-gated Ca2+ channel activity

    Design Framework and Intelligent In-Vehicle Information System for Sensor-Cloud Platform and Applications

    Full text link

    Patterns of primary care and mortality among patients with schizophrenia or diabetes: a cluster analysis approach to the retrospective study of healthcare utilization

    Get PDF
    Abstract Background Patients with schizophrenia have difficulty managing their medical healthcare needs, possibly resulting in delayed treatment and poor outcomes. We analyzed whether patients reduced primary care use over time, differentially by diagnosis with schizophrenia, diabetes, or both schizophrenia and diabetes. We also assessed whether such patterns of primary care use were a significant predictor of mortality over a 4-year period. Methods The Veterans Healthcare Administration (VA) is the largest integrated healthcare system in the United States. Administrative extracts of the VA's all-electronic medical records were studied. Patients over age 50 and diagnosed with schizophrenia in 2002 were age-matched 1:4 to diabetes patients. All patients were followed through 2005. Cluster analysis explored trajectories of primary care use. Proportional hazards regression modelled the impact of these primary care utilization trajectories on survival, controlling for demographic and clinical covariates. Results Patients comprised three diagnostic groups: diabetes only (n = 188,332), schizophrenia only (n = 40,109), and schizophrenia with diabetes (Scz-DM, n = 13,025). Cluster analysis revealed four distinct trajectories of primary care use: consistent over time, increasing over time, high and decreasing, low and decreasing. Patients with schizophrenia only were likely to have low-decreasing use (73% schizophrenia-only vs 54% Scz-DM vs 52% diabetes). Increasing use was least common among schizophrenia patients (4% vs 8% Scz-DM vs 7% diabetes) and was associated with improved survival. Low-decreasing primary care, compared to consistent use, was associated with shorter survival controlling for demographics and case-mix. The observational study was limited by reliance on administrative data. Conclusion Regular primary care and high levels of primary care were associated with better survival for patients with chronic illness, whether psychiatric or medical. For schizophrenia patients, with or without comorbid diabetes, primary care offers a survival benefit, suggesting that innovations in treatment retention targeting at-risk groups can offer significant promise of improving outcomes.http://deepblue.lib.umich.edu/bitstream/2027.42/78274/1/1472-6963-9-127.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78274/2/1472-6963-9-127.pdfPeer Reviewe

    The highly rearranged mitochondrial genomes of the crabs Maja crispata and Maja squinado (Majidae) and gene order evolution in Brachyura

    Get PDF
    Abstract We sequenced the mitochondrial genomes of the spider crabs Maja crispata and Maja squinado (Majidae, Brachyura). Both genomes contain the whole set of 37 genes characteristic of Bilaterian genomes, encoded on both \u3b1- and \u3b2-strands. Both species exhibit the same gene order, which is unique among known animal genomes. In particular, all the genes located on the \u3b2-strand form a single block. This gene order was analysed together with the other nine gene orders known for the Brachyura. Our study confirms that the most widespread gene order (BraGO) represents the plesiomorphic condition for Brachyura and was established at the onset of this clade. All other gene orders are the result of transformational pathways originating from BraGO. The different gene orders exhibit variable levels of genes rearrangements, which involve only tRNAs or all types of genes. Local homoplastic arrangements were identified, while complete gene orders remain unique and represent signatures that can have a diagnostic value. Brachyura appear to be a hot-spot of gene order diversity within the phylum Arthropoda. Our analysis, allowed to track, for the first time, the fully evolutionary pathways producing the Brachyuran gene orders. This goal was achieved by coupling sophisticated bioinformatic tools with phylogenetic analysis

    Schmallenberg virus pathogenesis, tropism and interaction with the innate immune system of the host

    Get PDF
    Schmallenberg virus (SBV) is an emerging orthobunyavirus of ruminants associated with outbreaks of congenital malformations in aborted and stillborn animals. Since its discovery in November 2011, SBV has spread very rapidly to many European countries. Here, we developed molecular and serological tools, and an experimental in vivo model as a platform to study SBV pathogenesis, tropism and virus-host cell interactions. Using a synthetic biology approach, we developed a reverse genetics system for the rapid rescue and genetic manipulation of SBV. We showed that SBV has a wide tropism in cell culture and “synthetic” SBV replicates in vitro as efficiently as wild type virus. We developed an experimental mouse model to study SBV infection and showed that this virus replicates abundantly in neurons where it causes cerebral malacia and vacuolation of the cerebral cortex. These virus-induced acute lesions are useful in understanding the progression from vacuolation to porencephaly and extensive tissue destruction, often observed in aborted lambs and calves in naturally occurring Schmallenberg cases. Indeed, we detected high levels of SBV antigens in the neurons of the gray matter of brain and spinal cord of naturally affected lambs and calves, suggesting that muscular hypoplasia observed in SBV-infected lambs is mostly secondary to central nervous system damage. Finally, we investigated the molecular determinants of SBV virulence. Interestingly, we found a biological SBV clone that after passage in cell culture displays increased virulence in mice. We also found that a SBV deletion mutant of the non-structural NSs protein (SBVΔNSs) is less virulent in mice than wild type SBV. Attenuation of SBV virulence depends on the inability of SBVΔNSs to block IFN synthesis in virus infected cells. In conclusion, this work provides a useful experimental framework to study the biology and pathogenesis of SBV

    High accuracy genotyping directly from genomic DNA using a rolling circle amplification based assay

    Get PDF
    BACKGROUND: Rolling circle amplification of ligated probes is a simple and sensitive means for genotyping directly from genomic DNA. SNPs and mutations are interrogated with open circle probes (OCP) that can be circularized by DNA ligase when the probe matches the genotype. An amplified detection signal is generated by exponential rolling circle amplification (ERCA) of the circularized probe. The low cost and scalability of ligation/ERCA genotyping makes it ideally suited for automated, high throughput methods. RESULTS: A retrospective study using human genomic DNA samples of known genotype was performed for four different clinically relevant mutations: Factor V Leiden, Factor II prothrombin, and two hemochromatosis mutations, C282Y and H63D. Greater than 99% accuracy was obtained genotyping genomic DNA samples from hundreds of different individuals. The combined process of ligation/ERCA was performed in a single tube and produced fluorescent signal directly from genomic DNA in less than an hour. In each assay, the probes for both normal and mutant alleles were combined in a single reaction. Multiple ERCA primers combined with a quenched-peptide nucleic acid (Q-PNA) fluorescent detection system greatly accellerated the appearance of signal. Probes designed with hairpin structures reduced misamplification. Genotyping accuracy was identical from either purified genomic DNA or genomic DNA generated using whole genome amplification (WGA). Fluorescent signal output was measured in real time and as an end point. CONCLUSIONS: Combining the optimal elements for ligation/ERCA genotyping has resulted in a highly accurate single tube assay for genotyping directly from genomic DNA samples. Accuracy exceeded 99 % for four probe sets targeting clinically relevant mutations. No genotypes were called incorrectly using either genomic DNA or whole genome amplified sample
    corecore