72 research outputs found

    Neurogenesis Drives Stimulus Decorrelation in a Model of the Olfactory Bulb

    Get PDF
    The reshaping and decorrelation of similar activity patterns by neuronal networks can enhance their discriminability, storage, and retrieval. How can such networks learn to decorrelate new complex patterns, as they arise in the olfactory system? Using a computational network model for the dominant neural populations of the olfactory bulb we show that fundamental aspects of the adult neurogenesis observed in the olfactory bulb -- the persistent addition of new inhibitory granule cells to the network, their activity-dependent survival, and the reciprocal character of their synapses with the principal mitral cells -- are sufficient to restructure the network and to alter its encoding of odor stimuli adaptively so as to reduce the correlations between the bulbar representations of similar stimuli. The decorrelation is quite robust with respect to various types of perturbations of the reciprocity. The model parsimoniously captures the experimentally observed role of neurogenesis in perceptual learning and the enhanced response of young granule cells to novel stimuli. Moreover, it makes specific predictions for the type of odor enrichment that should be effective in enhancing the ability of animals to discriminate similar odor mixtures

    Fast-Response Calmodulin-Based Fluorescent Indicators Reveal Rapid Intracellular Calcium Dynamics

    Get PDF
    Faithful reporting of temporal patterns of intracellular Ca 2 + dynamics requires the working range of indicators to match the signals. Current genetically encoded calmodulin-based fluorescent indicators are likely to distort fast Ca 2 + signals by apparent saturation and integration due to their limiting fluorescence rise and decay kinetics. A series of probes was engineered with a range of Ca 2 + affinities and accelerated kinetics by weakening the Ca 2 + -calmodulin-peptide interactions. At 37 °C, the GCaMP3-derived probe termed GCaMP3 fast is 40-fold faster than GCaMP3 with Ca 2 + decay and rise times, t 1/2 , of 3.3 ms and 0.9 ms, respectively, making it the fastest to-date. GCaMP3 fast revealed discreet transients with significantly faster Ca 2 + dynamics in neonatal cardiac myocytes than GCaMP6f. With 5-fold increased two-photon fluorescence cross-section for Ca 2 + at 940 nm, GCaMP3 fast is suitable for deep tissue studies. The green fluorescent protein serves as a reporter providing important novel insights into the kinetic mechanism of target recognition by calmodulin. Our strategy to match the probe to the signal by tuning the affinity and hence the Ca 2 + kinetics of the indicator is applicable to the emerging new generations of calmodulin-based probe

    Optimization of interneuron function by direct coupling of cell migration and axonal targeting

    Get PDF
    Neural circuit assembly relies on the precise synchronization of developmental processes, such as cell migration and axon targeting, but the cell-autonomous mechanisms coordinating these events remain largely unknown. Here we found that different classes of interneurons use distinct routes of migration to reach the embryonic cerebral cortex. Somatostatin-expressing interneurons that migrate through the marginal zone develop into Martinotti cells, one of the most distinctive classes of cortical interneurons. For these cells, migration through the marginal zone is linked to the development of their characteristic layer 1 axonal arborization. Altering the normal migratory route of Martinotti cells by conditional deletion of Mafb—a gene that is preferentially expressed by these cells—cell-autonomously disrupts axonal development and impairs the function of these cells in vivo. Our results suggest that migration and axon targeting programs are coupled to optimize the assembly of inhibitory circuits in the cerebral cortex

    Activity-Induced Remodeling of Olfactory Bulb Microcircuits Revealed by Monosynaptic Tracing

    Get PDF
    The continued addition of new neurons to mature olfactory circuits represents a remarkable mode of cellular and structural brain plasticity. However, the anatomical configuration of newly established circuits, the types and numbers of neurons that form new synaptic connections, and the effect of sensory experience on synaptic connectivity in the olfactory bulb remain poorly understood. Using in vivo electroporation and monosynaptic tracing, we show that postnatal-born granule cells form synaptic connections with centrifugal inputs and mitral/tufted cells in the mouse olfactory bulb. In addition, newly born granule cells receive extensive input from local inhibitory short axon cells, a poorly understood cell population. The connectivity of short axon cells shows clustered organization, and their synaptic input onto newborn granule cells dramatically and selectively expands with odor stimulation. Our findings suggest that sensory experience promotes the synaptic integration of new neurons into cell type-specific olfactory circuits

    Circulating tumour cells as a biomarker for diagnosis and staging in pancreatic cancer.

    No full text
    BackgroundCurrent diagnosis and staging of pancreatic ductal adenocarcinoma (PDAC) has important limitations and better biomarkers are needed to guide initial therapy. We investigated the performance of circulating tumour cells (CTCs) as an adjunctive biomarker at the time of disease presentation.MethodsVenous blood (VB) was collected prospectively from 100 consecutive, pre-treatment patients with PDAC. Utilising the microfluidic NanoVelcro CTC chip, samples were evaluated for the presence and number of CTCs. KRAS mutation analysis was used to compare the CTCs with primary tumour tissue. CTC enumeration data was then evaluated as a diagnostic and staging biomarker in the setting of PDAC.ResultsWe found 100% concordance for KRAS mutation subtype between primary tumour and CTCs in all five patients tested. Evaluation of CTCs as a diagnostic revealed the presence of CTCs in 54/72 patients with confirmed PDAC (sensitivity=75.0%, specificity=96.4%, area under the curve (AUROC)=0.867, 95% CI=0.798-0.935, and P<0.001). Furthermore, a cut-off of ⩾3 CTCs in 4 ml VB was able to discriminate between local/regional and metastatic disease (AUROC=0.885; 95% CI=0.800-0.969; and P<0.001).ConclusionCTCs appear to function well as a biomarker for diagnosis and staging in PDAC
    • …
    corecore