19 research outputs found

    Impact of glucocorticoid receptor density on ligand-independent dimerization, cooperative ligand-binding and basal priming of transactivation: a cell culture model

    Get PDF
    Glucocorticoid receptor (GR) levels vary between tissues and individuals and are altered by physiological and pharmacological effectors. However, the effects and implications of differences in GR concentration have not been fully elucidated. Using three statistically different GR concentrations in transiently transfected COS-1 cells, we demonstrate, using co-immunoprecipitation (CoIP) and fluorescent resonance energy transfer (FRET), that high levels of wild type GR (wtGR), but not of dimerization deficient GR (GRdim), display ligand-independent dimerization. Whole-cell saturation ligand-binding experiments furthermore establish that positive cooperative ligand-binding, with a concomitant increased ligand-binding affinity, is facilitated by ligand-independent dimerization at high concentrations of wtGR, but not GRdim. The down-stream consequences of ligand-independent dimerization at high concentrations of wtGR, but not GRdim, are shown to include basal priming of the system as witnessed by ligand-independent transactivation of both a GRE-containing promoter-reporter and the endogenous glucocorticoid (GC)-responsive gene, GILZ, as well as ligand-independent loading of GR onto the GILZ promoter. Pursuant to the basal priming of the system, addition of ligand results in a significantly greater modulation of transactivation potency than would be expected solely from the increase in ligand-binding affinity. Thus ligand-independent dimerization of the GR at high concentrations primes the system, through ligand-independent DNA loading and transactivation, which together with positive cooperative ligand-binding increases the potency of GR agonists and shifts the bio-character of partial GR agonists. Clearly GR-levels are a major factor in determining the sensitivity to GCs and a critical factor regulating transcriptional programs

    Responses of two Mediterranean seagrasses to experimental changes in salinity

    Get PDF
    The aim of this study is to examine the effects of variations in salinity levels on growth and survival of two fast-growing Mediterranean seagrasses, Cymodocea nodosa and Zostera noltii. We also tested the capacity of C. nodosa to acclimate to a gradual increase in salinity and to discover how it responds to a sharp rise in salinity in combination with other factors, such as increases in temperature, seasonality and different plant-population origins. Several short-term (10 days) experiments were conducted under controlled conditions. For each experiment, ten marked shoots were placed in 5-l aquaria, where they were exposed to different salinity treatments (ranging from 2 to 72 psu). Growth and survival of both species were significantly affected by salinity. A significant effect between salinity and temperature on the shoot growth rate of C. nodosa was also detected, but not on shoot mortality. When C. nodosa plants were acclimated by gradually increasing the salinity level, it was observed that acclimatisation improved tolerance to salinity changes. A different response to salinity variations, depending on the origin of the plants or the season of the year, was also detected. These results indicated that Z. noltii plants tolerate conditions of hyposalinity better than C. nodosa, and that the tolerance range of C. nodosa may change depending on the temperature, the season or the population.This research was financed by an ACUAMED contract and by an FPI grant (FPI 01 A 002) from the Generalitat Valenciana

    Diel behaviour and trophic ecology of Scolopsis bilineatus (Nemipteridae)

    No full text
    Nemipterids are ubiquitous mid-sized fishes on Indo-Pacific reefs. We investigated the trophic ecology of the nemipterid species Scolopsis bilineatus at two locations on the Great Barrier Reef: One Tree Island and Orpheus Island. Fish ate a variety of benthic invertebrate taxa represented by rank: polychaetes, ophuiroids, sipunculids, nemerteans and small crustaceans. Polychaetes dominated the diet of fish of all sizes. Feeding behaviour and habitat utilization varied with the size of fish. Juveniles fed diurnally and adults nocturnally. Most juveniles fed rapidly in sand and rubble habitat during the day. In contrast, adults occupied shelter sites during the day, but dispersed onto sand to feed at night. A manipulative experiment demonstrated that small adult S. bilineatus exhibit opportunistic behaviour by responding to disturbance of the substratum for the purposes of feeding. Diurnal opportunistic feeding probably has a minimal influence on overall dietary intake. Identification of nocturnal feeding for adult S. bilineatus is of significant ecological importance, as nocturnal fishes often play unique and important roles in energy and nutrient cycling on reefs

    Cre Driver Mice Targeting Macrophages.

    No full text
    The Cre/loxP system is a widely applied technology for site-specific genetic manipulation in mice. This system allows for deletion of the genes of interest in specific cells, tissues, and whole organism to generate a diversity of conditional knockout mouse strains. Additionally, the Cre/loxP system is useful for development of cell- and tissue-specific reporter mice for lineage tracing, and cell-specific conditional depletion models in mice. Recently, the Cre/loxP technique was extensively adopted to characterize the monocyte/macrophage biology in mouse models. Compared to other relatively homogenous immune cell types such as neutrophils, mast cells, and basophils, monocytes/macrophages represent a highly heterogeneous population which lack specific markers or transcriptional factors. Though great efforts have been made toward establishing macrophage-specific Cre driver mice in the past decade, all of the current available strains are not perfect with regard to their depletion efficiency and targeting specificity for endogenous macrophages. Here we overview the commonly used Cre driver mouse strains targeting macrophages and discuss their major applications and limitations. Methods Mol Biol 2018; 1784:263-27
    corecore